精英家教网 > 初中数学 > 题目详情
19.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:$\frac{DP}{BQ}$=$\frac{PE}{QC}$.
(1)尝试探究:在图1中,由DP∥BQ得△ADP∽△ABQ(填“≌”或“∽”),则$\frac{DP}{BQ}$=$\frac{AP}{AQ}$,同理可得$\frac{PE}{QC}$=$\frac{AP}{AQ}$,从而$\frac{DP}{BQ}$=$\frac{PE}{QC}$.
(2)类比延伸:如图2,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于M、N两点,若AB=AC=1,则MN的长为$\frac{\sqrt{2}}{9}$.
(3)拓展迁移:如图3,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交于DE于M、N两点,AB<AC,求证:MN2=DM•EN.

分析 (1)可证明△ADP∽△ABQ,△ACQ∽△ADP,从而根据等比代换,得出$\frac{DP}{BQ}$=$\frac{PE}{QC}$;
(2)根据三角形的面积公式求出BC边上的高$\frac{\sqrt{2}}{2}$,根据△ADE∽△ABC,求出正方形DEFG的边长$\frac{\sqrt{2}}{3}$,根据$\frac{MN}{GF}$等于高之比,即可求出MN;
(3)可得出△BGD∽△EFC,则DG•EF=CF•BG;又由DG=GF=EF,得GF2=CF•BG,再根据(1)$\frac{DM}{BG}$=$\frac{MN}{GF}$=$\frac{EN}{FC}$,从而得出答案.

解答 解:(1)如图1,∵DP∥BQ,
∴△ADP∽△ABQ,
∴$\frac{DP}{BQ}$=$\frac{AP}{AQ}$,
同理可得△ACQ∽△APE,
∴$\frac{EP}{CQ}$=$\frac{AP}{AQ}$,
∴$\frac{DP}{BQ}$=$\frac{EP}{CQ}$.
故答案为:∽,$\frac{AP}{AQ}$;

(2)如图2所示,作AQ⊥BC于点Q.
∵BC边上的高AQ=$\frac{\sqrt{2}}{2}$,
∵DE=DG=GF=EF=BG=CF,
∴DE:BC=1:3,
又∵DE∥BC,
∴AD:AB=1:3,
∴AD=$\frac{1}{3}$,DE=$\frac{\sqrt{2}}{3}$,
∵DE边上的高为$\frac{\sqrt{2}}{6}$,MN:GF=$\frac{\sqrt{2}}{6}$:$\frac{\sqrt{2}}{2}$,
∴MN:$\frac{\sqrt{2}}{3}$=$\frac{\sqrt{2}}{6}$:$\frac{\sqrt{2}}{2}$,
∴MN=$\frac{\sqrt{2}}{9}$.
故答案为:$\frac{\sqrt{2}}{9}$.

(3)证明:如图3,∵∠B+∠C=90°∠CEF+∠C=90°,
∴∠B=∠CEF,
又∵∠BGD=∠EFC,
∴△BGD∽△EFC,
∴$\frac{DG}{CF}$=$\frac{BG}{EF}$,
∴DG•EF=CF•BG,
又∵DG=GF=EF,
∴GF2=CF•BG,
由(1)得$\frac{DM}{BG}$=$\frac{MN}{GF}$=$\frac{EN}{FC}$,
∴$\frac{MN}{GF}$×$\frac{MN}{GF}$=$\frac{DM}{BG}$×$\frac{EN}{CF}$,
∴($\frac{MN}{GF}$)2=$\frac{DM}{BG}$×$\frac{EN}{CF}$,
∵GF2=CF•BG,
∴MN2=DM•EN.

点评 本题属于相似形综合题,主要考查了相似三角形的判定和性质以及正方形的性质的综合应用,解决问题的关键是运用相似三角形的性质列出比例式进行推导计算.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形或作辅助线构造相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.某汽车生产企业产量和效益逐年增加.据统计,2014年某种品牌汽车的年产量为100万辆,到2016年,该品牌汽车的年产量达到144万辆.若该品牌汽车年产量的年平均增长率从2014年开始五年内保持不变,求该品牌汽车年平均增长率和2017年的年产量.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:实数m,n满足:m+n=4,mn=-2.
(1)求(1-m)(1-n);
(2)求m2+n2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加,据统计,某小区2013年底拥有家庭轿车64辆,2015年底家庭轿车的拥有量达到100辆,若该小区家庭轿车拥有量的年平均增长率相同.
(1)求该小区家庭轿车拥有量的年平均增长率;
(2)该小区到2016年底家庭轿车拥有量将达到多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E,BE=2,BC=6.
(1)求证:△ABD∽△CBE;
(2)求AE的长度;
(3)设AD与CE交于F,求△CFD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点H在平行四边形ABCD的边DC延长线上,连结AH分别交BC、BD于点E、F.求证:$\frac{BE}{AD}$=$\frac{AB}{DH}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知点P(-2,3)在反比例函数y=$\frac{k}{x}$(k为常数,且k≠0)的图象上.
(1)求这个函数的解析式;
(2)判断该反比例函数图象是否经过点A(-1,-3),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某班召开主题班会,准备从由2名男生和2名女生组成的班委会中选择2人担任主持人.
(1)用树状图或表格列出所有等可能结果;
(2)求所选主持人恰好为1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.一批货物要运往某地,货主准备租用汽车运输公司的甲,乙两种货车.已知过去两次租用这两种货车的情况如表;
第一次第二次
甲种车辆数单位(辆)25
乙种车辆数单位(辆)36
累计运货数单位(吨)15.535
现在该公司2辆甲种货车及5辆乙种货车一次刚好运货,如果按每吨付运费30元计算,货主应付多少元?

查看答案和解析>>

同步练习册答案