精英家教网 > 初中数学 > 题目详情
2.如图,在?ABCD中,AF、BH、CH、DF分别是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AF与BH交于点E,CH与DF交于点G.在不添加其他条件的情况下,试写出上述条件推出的结论,并选择你喜欢的一个结论说明成立的理由.(要求推理过程中用到″平行四边形″和″角平分线″这两个条件).

分析 可推出:AE⊥BE.根据在平行四边形中邻角互补,有∠DAB+∠ABC=180°.再根据角的平分线的性质有,∠EAB+∠EBA=$\frac{1}{2}$(∠DAB+∠ABC),可推出∠AEB=90°,即AE⊥BE.

解答 解:结论:AE⊥BE,BH⊥CH,CG⊥DG,AF⊥DF,四边形EFGH是矩形,△ABE≌△CDG,△BCH≌△DAF;
:在?ABCD中,∵AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE,BE分别平分∠DAB,∠ABC,
∴∠EAB+∠EBA=$\frac{1}{2}$(∠DAB+∠ABC)=$\frac{1}{2}$×180°=90°.
∴∠AEB=90°,
∴AE⊥BE.

点评 本题考查了平行四边形的性质、全等三角形的判定与性质;本题是开放题,答案不唯一,利用平行四边形的性质和角的平分线的性质推理求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,正方形ABCD的对角线AC、BD交于点O,AE=BF.求证:∠ACF=∠DBE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:点M,N把线段AB分割成AM、MN,NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
应用:(1)如图①,已知M、N是线段AB的勾股分割点,AM=6,MN=8,求NB的长;
(2)如图②,在△ABC中,点D、E在边线段BC上,且BD=3,DE=5,EC=4,直线l∥BC,分别交AB、AD、AE、AC于点F、M、N、G.求证:点M,N是线段FG的勾股分割点
拓展:(3)在菱形ABCD中,∠ABC=β(β<90°),点E、F分别在BC、CD上,AE、AF分别交BD于点M、N.
①如图③,若BE=$\frac{1}{2}$BC,DF=$\frac{1}{3}$CD,求证:M、N是线段BD的勾股分割点.
②如图④,若∠EAF=$\frac{1}{2}$∠BAD,sinβ=$\frac{12}{13}$,当点M、N是线段AB的勾股分割点时,求BM:MN:ND的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.据官网统计,2014年我国微信平均“日登录用户”5亿,2016年达到5.7亿,如果设年平均增长率为x,那么x应满足的方程为(  )
A.5(x+1)=5.7B.5.7(x-1)=5C.5(x+1)2=5.7D.5+5x=5.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)计算:$\frac{a-b}{2a+2b}$•$\frac{{a}^{2}+2ab+{b}^{2}}{{a}^{2}-{b}^{2}}$
(2)解方程:$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)1+$\frac{3x}{x-2}$=$\frac{6}{x-2}$;
(2)$\frac{1}{2x-1}$=$\frac{1}{2}$-$\frac{3}{4x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,请证明?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?直接写出条件,不需要证明.
(3)若AC=4$\sqrt{2}$,BC=3,在(2)的条件下,求△ABC中AB边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,∠B=90°,AB=BC=6,把△ABC进行折叠,使点A与点D复合,BD:DC=1:2,折痕为EF,点E在AB上,点F在AC上,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)$\sqrt{0.01}$+$\root{3}{-27}$-$\sqrt{\frac{1}{100}}$
(2)$\sqrt{24}$-$\sqrt{0.5}$+2$\sqrt{\frac{2}{3}}$+3$\sqrt{8}$
(3)$\sqrt{\frac{2}{3}}$-4×$\root{3}{216}$+42$\sqrt{\frac{1}{6}}$
(4)$\frac{2}{{2+\sqrt{3}}}$
(5)$\frac{4}{{\sqrt{3}-\sqrt{5}}}$
(6)$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{2}+1}$-$\frac{2}{\sqrt{3}+1}$.

查看答案和解析>>

同步练习册答案