精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形ABC中,AC=BC=6AB=8,以BC为直径作⊙OAB于点D,交AC于点GDFAC,垂足为F,交CB的延长线于点E.

1)求证:直线EF是⊙O的切线;

2)求sinE的值.

【答案】(1)证明见解析;(2 .

【解析】

1)先连结OD,由OD=OB,得出∠CBA=ODB由于AC=BC,得出∠CBA=A.所以∠ODB=A,得出DOAC,可证EF是⊙O的切线;

2)连接BG,可得BGEF,那么∠E=GBC,设CG=x,在RtBGA中和RtBGC中,利用勾股定理都表示出BG2,求得CG的值,CGBC即为sinE的值.

证明:(1)如图,连结OD,则OD=OB

∴∠CBA=∠ODB

∵AC=BC

∴∠CBA=∠A

∴∠ODB=∠A

∵OD∥AC∴∠ODE=∠CFE

∵DF⊥ACF∴∠CFE=90

∴∠ODE=90

∴OD⊥EF

∴EF⊙O的切线

2)连结BG∵BC是直径

∴∠BGC=90.=∠CFE

∴BG∥EF

∴∠GBC=∠E

CG=x,则AG=AC-CG=6-x

Rt△BGA中,

Rt△BGC中,

解得

Rt△BGC中,

∴sin∠E

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.

(1)如图2,请用两种不同的方法画出顶角为45的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种)

(2)如图3ABC 中,AC=2,BC=3,C=2B,请画出ABC 的三分线,并求出三分线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展唱红歌比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.

(1)根据图示填写下表:

班级

中位数(分)

众数(分)

九(1)

85

九(2)

100

(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.

(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.

(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,O为坐标原点,OAOB分别在x轴、y轴上,点B的坐标为(03),∠ABO30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

A. ()B. (2)C. ()D. (3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为相似方程,例如,的实数根是36的实数根是12,则一元二次方程为相似方程.下列各组方程不是相似方程的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境

数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,.你能求出的度数吗?

(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:

思路一:将绕点逆时针旋转,得到,连接,求出的度数.

思路二:将绕点顺时针旋转,得到,连接,求出的度数.

请参考以上思路,任选一种写出完整的解答过程.

类比探究

(2)如图2,若点是正方形外一点,,求的度数.

拓展应用

(3)如图3,在边长为的等边三角形内有一点,则的面积是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点EAD的延长线上,且PA=PEPECDF.

1)证明:△APD≌△CPD

2)求∠CPE的度数;

3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线yx+4与x轴、y轴分别交于点A和点B,点CD分别为线段ABOB的中点,点POA上一动点,PCPD值最小时点P的坐标为.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

同步练习册答案