精英家教网 > 初中数学 > 题目详情
在平行四边形ABCD中,E为BC边上一点,连接AE并延长交直线DC于F,且CE=CF.
(1)如图1,求证:AF是∠BAD的平分线;
(2)如图2,若∠ABC=90°,点G是线段EF上一点,连接DG、BD、CG,若∠BDG=45°,求证:CG=EF.

【答案】分析:(1)根据四边形ABCD是平行四边形得出,AB∥DF,BC∥AD,得出∠2=∠F,∠1=∠3,进而求出∠1=∠2即可;
(2)根据∠ABC=90°,G是EF的中点可直接求得.
解答:证明:(1)∵在平行四边形ABCD中,
∴AB∥DF,BC∥AD,
∴∠2=∠F,∠1=∠3,
∵EC=FC,
∴∠3=∠F,
∴∠1=∠2,
∴AF是∠BAD的平分线;

(2)连接BG,
∵在平行四边形ABCD中,∠ABC=90°,
∴四边形ABCD是矩形,
∵CE=CF,∠BCD=∠ECF=90°,
∴△CEF为RT△,
∴∠CEF=45°
∴∠BAE=45°,
∴∠EAB=45°,
∵∠BDG=45°,
∴ABGD四点共圆 (同弦BG)
又四边形ABCD是矩形
∴ABCD四点共圆
即ABGCD五点共圆
∴∠ECG=45°,
∵△CEF为RT△,∠ECG=45°,
∴CG是RT△CEF斜边EF上的中线,
∴CG=EF.
点评:此题主要考查了平行四边形的性质,等腰直角三角形的判定与性质,四点共圆的有关性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知如图,在平行四边形ABCD中,BN=DM,BE=DF.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)在平行四边形ABCD中,∠DAB=60°,点E是AD的中点,点O是AB边上一点,且AO=AE,过点E作直线HF交DC于点H,交BA的延长线于F,以OE所在直线为对称轴,△FEO经轴对称变换后得到△F′EO,直线EF′交直线DC于点M.
(1)求证:AD∥OF′;
(2)若M点在点H右侧,OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE⊥AD交BD于点E,CF⊥BC交BD于点F.求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠B的平分线交AD于E,AE=10,ED=4,那么平行四边形ABCD的周长是
48
48

查看答案和解析>>

同步练习册答案