【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).
(1)求该抛物线所对应的函数关系式;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
【答案】
(1)
解:∵抛物线经过A(﹣1,0),B(5,0),C(0,5),
∴设y=a(x+1)(x﹣5),
∴5=a(0+1)(0﹣5),
解得a=﹣1,
∴抛物线的函数关系式为y=﹣(x+1)(x﹣5),
即y=﹣x2+4x+5
(2)
解:①设直线BC的函数关系式为y=kx+b,则
解得 ,
∴y=﹣x+5,
设D(m,﹣m2+4m+5),E(m,﹣m+5),
∴DE=﹣m2+4m+5+m﹣5=﹣m2+5m
∴s= (﹣m2+5m)=﹣
m2+
m (0<m<5);
②s=﹣ m2+
m=
,
∵ ,
∴当m= 时,S有最大值,S最大值=
;
③∵△BDE和△BFE是等高的,
∴它们的面积比=DE:EF,
(ⅰ)当DE:EF=2:3时,
即 ,
解得: (舍),
此时,D( );
(ⅱ)当DE:EF=3:2时,
即 ,
解得: (舍),
此时,D( ).
综上所述,点D的坐标为( )或(
)
【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x﹣5),将点C(0,3)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)①设直线BC的函数解析式为y=kx+b,结合点B、点C的坐标,利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m得出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式,即可得出结论;②由①的结论,利用配方法将S关于m的函数关系式进行变形,从而得出结论;③结合图象可知△BDE和△BFE是等高的,由此得出它们的面积比=DE:EF,分两种情况考虑,根据两点间的距离公式即可得出关于m的分式方程,解方程即可得出m的值,将其代入到点D的坐标中即可得出结论.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26, ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。
(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 内的射线,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,当∠BOC 在∠AOD 内绕着点 O以 3°/秒的速度逆时针旋转 t 秒时,当∠AOM:∠DON=3:4 时,则 t=____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM= MF.其中正确结论的个数是( )
A.5个
B.4个
C.3个
D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB= ,求⊙O半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 若|a|=﹣a,则 a 一 定是负数
B. 单项式 x3y2z 的系数为 1,次数是 6
C. 若 AP=BP,则点 P 是线段 AB 的中点
D. 若∠AOC=∠AOB,则射线 OC 是∠AOB 的平分线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com