【题目】如图,在Rt△ABC中,∠ABC=90,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.
(1)求证:AE=CE .
(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径.
(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB .
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:
(1)分别写出水温上升和下降阶段与之间的函数关系式;
(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)
(1)这个游戏规则对双方公平吗?说说你的理由;
(2)请你设计一个对双方都公平的游戏规则.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是菱形,BC∥x轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆⊙P的半径是,圆心在x轴上移动,若⊙P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m 的取值范围是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点为内的一个动点,过点作与,使得,分别交、于点、.
(1)求证:;
(2)连接,若,试求的值;
(3)记,,,若,,且、、为整数,求、、的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,连接CD,点P为BC边上一点,把△PBD沿PD翻折,点B落在点E处,设PE交AC于F.
(1)如图1,求证:△PCF的周长=CD.
(2)若点P为BC边的延长线上一点,(1)中结论是否仍然成立,若成立,请证明;若不成立,线段PC、CF、PF、CD之间是否存在其它的数量关系,画出图形并证明.
(3)如图2,设DE交AC于G.若∠FPC=30°,CD=3,直接写出FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com