【题目】现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
【答案】(1) y=32-0.2x;(2) 共有三种方案,A、B两种车厢的节数分别为24节、16节或25节、15节或26节、14节
【解析】试题分析:(1)总费用=0.6×A型车厢节数+0.8×B型车厢节数.
(2)应分别表示出两类车厢能装载的甲乙两种货物的质量.35×A型车厢节数+25×B型车厢节数≥1240;15×A型车厢节数+35×B型车厢节数≥880.
试题解析:(1)6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(40x)节,总运费为y万元,
依题意,得y=0.6x+0.8(40x)=0.2x+32;
(2)依题意,得,
解得: ,
∴24x26,
∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:
①24节A型车厢和16节B型车厢;
②25节A型车厢和15节B型车厢;
③26节A型车厢和14节B型车厢.
科目:初中数学 来源: 题型:
【题目】如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当时,延长AB至点E,使BE=AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(x,y)到x轴的距离为2,到y轴的距离为3,且x+y>0,xy<0,则点P的坐标为( )
A.(﹣2,3)B.(2,3)C.(3,﹣2)D.(3,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠A
B.∠l=∠2
C.∠D=∠DCE
D.∠D+∠ACD=180
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com