精英家教网 > 初中数学 > 题目详情
17.为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别成绩x(分)频数(人数)频率
50≤x<6020.04
60≤x<70100.2
70≤x<8014b
80≤x<90a0.32
90≤x<10080.16
请根据表格提供的信息,解答以下问题:
(1)直接写出表中a=16,b=0.28;
(2)请补全右面相应的频数分布直方图;
(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.
(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)

分析 (1)根据一组的频数及频率求得总人数,由频率=频数÷总人数可以求得a、b的值;
(2)根据(1)中a的值,可以将频数分布直方图补充完整;
(3)根据表格中的数据可以求得本次大赛的优秀率;
(4)根据各分数段人数的分布情况提出合理建议即可.

解答 解:(1)本次调查的总人数为2÷0.04=50(人),
∴a=50×0.32=16,b=14÷50=0.28,
故答案为:16,0.28;

(2)补全相应的频数分布直方图如下:


(3)本次大赛的优秀率为0.32+0.16=0.48=48%,
故答案为:48%;

(4)由频数分布直方图可知,50人主要分布在60~90分,90~100分人数较少,
故应着重培养高分段学生.

点评 本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,一次函数y1=-x+b1和y2=k2x+b2的图象交于(-1,2),则不等式组4>-x+b1>k2x+b2的解集为(  )
A.3>x>-1B.-1>x>-2C.x<-1D.-1>x>-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得(  )
A.$\left\{\begin{array}{l}x=3y\\ x+3=y-4\end{array}$B.$\left\{\begin{array}{l}x=3y\\ x-3=y+4\end{array}$C.$\left\{\begin{array}{l}3x=y\\ x-3=y+4\end{array}$D.$\left\{\begin{array}{l}3x=y\\ x+3=y-4\end{array}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AC=BC,D是AC上一点,DE∥AB交BC于点E,且AD=DE,F是AB上一点,BF=BE,连接FD.
(1)试判断四边形ADEB的形状,并说明理由;
(2)求证:BE=FD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=25度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,∠CDH+∠EBG=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE与FC会平行吗?说明理由;
(2)AD与BC的位置关系如何?为什么?
(3)BC平分∠DBE吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,直线AB与CD相交于点O,∠COE=2∠BOE.若∠AOC=120°,则∠DOE等于(  )
A.135°B.140°C.145°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解不等式(2x+1)(3x-2)>0时,根据有理数乘法法则“两数相乘,同号得正”有$\left\{\begin{array}{l}{2x+1>0}\\{3x-2>0}\end{array}\right.$①,或$\left\{\begin{array}{l}{2x+1<0}\\{3x-2<0}\end{array}\right.$②,解不等式①,得x>$\frac{2}{3}$;解不等式②,得x<$-\frac{1}{2}$,则不等式(2x+1)(3x-2)>0的解集为x>$\frac{2}{3}$或x<$-\frac{1}{2}$,请参照例题,解不等式$\frac{5x+1}{2x-3}$≤0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:(π-$\sqrt{5}$)0+(-$\frac{1}{2}$)-2=5.

查看答案和解析>>

同步练习册答案