精英家教网 > 初中数学 > 题目详情
精英家教网如图,在等边△ABC中,D是AC边中点,延长BC到点E,使CE=CD,连接DE,试判断△BDE的形状,并说明理由.
分析:首先由在等边△ABC中,D是AC边中点,根据三线合一与等边对等角的性质,即可求得∠ABC=∠ACB,∠DBC=
1
2
∠ABC,又由CE=CD,根据等边对等角的性质,可得∠E=∠CDE,又由三角形外角的性质,即可求得∠E=
1
2
∠ACB,则可得∠E=∠DBC,然后利用等角对等边,即可证得△BDE是等腰三角形.
解答:解:△BDE是等腰三角形.
理由:∵在等边△ABC中,D是AC边中点,
∴∠ABC=∠ACB=60°,∠DBC=
1
2
∠ABC=30°,
∵CE=CD,
∴∠E=∠CDE,
∵∠ACB=∠E+∠CDE,
∴∠E=
1
2
∠ACB=30°,
∴∠E=∠DBC,
∴DB=DE.
∴△BDE是等腰三角形.
点评:此题考查了等边三角形的性质与等腰三角形的性质与判定.此题难度适中,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案