【题目】如图,在平面直角坐标系中,直线l1的解析式为y=-x,直线l2与l1交于点A(a,-a),与y轴交于点B(0,b),其中a,b满足(a+3)2+=0.
(1)求直线l2的解析式;
(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;
(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.
【答案】(1)y=x+4;(2)P点坐标为(-1,5)或(-9,5);(3)Q点的坐标为(0,)或(0,)或(0,).
【解析】
(1)根据非负数的性质,可得a,b,根据待定系数法,可得函数解析式;
(2)根据平行线间的距离相等,可得Q到AO的距离等于B到AO的距离,根据等底等高的三角形的面积相等,可得S△AOP=S△AOB,根据解方程组,可得P点坐标;
(3)根据等腰直角三角形的性质,可得关于a的方程,根据解方程,可得a,根据平行于x轴直线上点的纵坐标相等,可得答案.
解:(1)由(a+3)2+=0,得
a=-3,b=4,
即A(-3,3),B(0,4),
设l2的解析式为y=kx+b,将A,B点坐标代入函数解析式,得
,
解得,
l2的解析式为y=x+4;
(2)如图1,
作PB∥AO,P到AO的距离等于B到AO的距离,
S△AOP=S△AOB.
∵PB∥AO,PB过B点(0,4),
∴PB的解析式为y=-x+4或y=-x-4,
又P在直线y=5上,
联立PB及直线y=5,得
-x+4=5或-x-4=5,
解得x=-1或-9,
∴P点坐标为(-1,5)或(-9,5);
(3)设M点的坐标为(a,-a),N(a,a+4),
∵点M在点N的下方,
∴MN=a+4-(-a)=+4,
如图2,
当∠NMQ=90°时,即MQ∥x轴,NM=MQ,+4=-a,
解得a=-,即M(-,),
∴Q(0,);
如图3,
当∠MNQ=90°时,即NQ∥x轴,NM=NQ,+4=-a,
解得a=-,即N(-,),
∴Q(0,),
如图4,
当∠MQN=90°时,即NM∥y轴,MQ=NQ,a+2=-a,
解得a=-,
∴Q(0,).
综上所述:Q点的坐标为(0,)或(0,)或(0,).
科目:初中数学 来源: 题型:
【题目】为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.
(1)请补全条形统计图;
(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;
(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),我们把点(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2017的坐标为 ( )
A. (-3,3) B. (-2,-2) C. (3,-1) D. (2,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y1=-x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C,两条直线l1、l2相交于点D,连接AB.
(1)求两直线l1、l2交点D的坐标;
(2)求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.
(1)求购买甲、乙两种树苗各多少棵?
(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数 的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求以A,B,C,D为顶点的四边形的面积;
(2)在抛物线上是否存在点P,使得△ABP的面积是△ABC的面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com