精英家教网 > 初中数学 > 题目详情

【题目】如图,AE=AF,AB=AC,ECBF交于点O,A=60°,B=25°,求∠EOB的度数.

【答案】EOB=70°.

【解析】

利用SAS可证明△ABF≌△ACE,根据全等三角形的对应角相等可得∠B=∠C,根据三角形外角的性质得到∠BFC=∠A+∠B,求出∠BFC的度数,在△FOC中,根据三角形的内角和定理求出∠COF的度数,最后根据对顶角相等可得∠EOB的度数.

ABFACE中,

AF=AE,A=A,AB=AC,

∴△ABF≌△ACE(SAS).

∴∠B=C.

∵∠B=25°,∴∠C=25°.

又∵∠CFBAFB的外角,∠A=60°,

∴∠CFB=60°+25°=85°,

∴∠COF=180°-CFB-C=180°-85°-25°=70°.

又∵∠EOB=COF,∴∠EOB=70°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=65°,∠B=75°,将△ABC沿EF对折,使C点与C′点重合.当∠1=45°时,∠2=________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,抛物线y=x22mx+m2+m的顶点为A,与y轴交于点B.当抛物线不经过坐标原点时,分别作点AB关于原点的对称点CD,连结ABBCCDDA

1)分别用含有m的代数式表示点AB的坐标.

2)判断点B能否落在y轴负半轴上,并说明理由.

3)连结AC,设l=AC+BD,求lm之间的函数关系式.

4)过点Ay轴的垂线,交y轴于点P,以AP为边作正方形APMNMNAP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,点F、G、B、C共线,且G、B重合,△EFG沿折线B﹣M﹣D方向以每秒 个单位长度平移,得到△E1F1G1 , 平移过程中,点G1始终在折线B﹣M﹣D上,△E1F1G1与△DBM无重叠时,△E1F1G1停止运动,设△E1F1G1与△DBM重叠部分面积为S,平移时间为t,

(1)当△E1F1G1的顶点G1恰好在BD上时,t=秒;
(2)直接写出S与t的函数关系式,及自变量t的取值范围;
(3)如图2,△E1F1G1平移到G1与M重合时,将△E1F1G1绕点M旋转α°(0°<α<180°)得到△E2F2G1 , 点E1、F1分别对应E2、F2 , 设直线F2E2与直线DM交于P,与直线DC交于Q,是否存在这样的α,使△DPQ为直角三角形?若存在,求α的度数和DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,B=30°,AD平分CAB.

(1)求CAD的度数;

(2)延长AC至E,使CE=AC,求证:DA=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 与x轴相交于点A、B,与y轴相交于点C,抛物线对称轴与x轴相交于点M,

(1)求△ABC的面积;
(2)若p是x轴上方的抛物线上的一个动点,求点P到直线BC的距离的最大值;
(3)若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,求直线PC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是矩形ABCD的边CB的中点,AF⊥DE于点F,AB=3,AD=4.求点A到直线DE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知AD>AB,在边AD上取点E,连结CE,过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=2,AE=3,AD=7,求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.
(1)求点P与点Q之间的距离;
(2)求∠APB的度数.

查看答案和解析>>

同步练习册答案