精英家教网 > 初中数学 > 题目详情
8.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°
(1)如图1,当点A、C、D在同一条直线上时,证明:AE=BD,AE⊥BD.
(2)如图2,当点A、C、D不在同一条直线上时,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.
(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,∠AFG的大小变化吗?若不变,求出∠AFG的度数;若改变,请说明理由.

分析 (1)证明△ACE≌△BCD,得到∠1=∠2,由对顶角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可解答;
(2)证明△ACE≌△BCD,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可解答;
(3)∠AFG=45°,如图3,过点C作CM⊥BD,CN⊥AE,垂足分别为M、N,由△ACE≌△BCD,得到S△ACE=S△BCD,AE=BD,证明得到CM=CN,得到CF平分∠BFE,由AF⊥BD,得到∠BFE=90°,所以∠EFC=45°,根据对顶角相等得到∠AFG=45°.

解答 (1)证明:如图1,

在△ACE和△BCD中,
∵$\left\{\begin{array}{l}{AC=BC}\\{∠ACB=∠ECD=90°}\\{EC=DC}\end{array}\right.$,
∴△ACE≌△BCD,
∴∠1=∠2,AE=BD,
∵∠3=∠4,
∴∠BFE=∠ACE=90°,
∴AE⊥BD;
(2)成立,
证明:如图2,
∵∠ACB=∠ECD,
∴∠ACB+∠ACD=∠ECD+∠ACD,
∴∠BCD=∠ACE,
在△ACE≌△BCD中$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{EC=DC}\end{array}\right.$,
∴△ACE≌△BCD,
∴∠1=∠2,AE=BD,
∵∠3=∠4,
∴∠BFA=∠BCA=90°,
∴AF⊥BD.
(3)∠AFG=45°,
如图3,过点C作CM⊥BD,CN⊥AE,垂足分别为M、N,
∵△ACE≌△BCD,
∴S△ACE=S△BCD,AE=BD,
∵S△ACE=$\frac{1}{2}$AE•CN,
S△BCD=$\frac{1}{2}$BD•CM,
∴CM=CN,
∵CM⊥BD,CN⊥AE,
∴CF平分∠BFE,
∵AF⊥BD,
∴∠BFE=90°,
∴∠EFC=45°,
∴∠AFG=45°.

点评 本题考查了全等三角形的判定定理与性质定理,角平分线的性质,解决本题的关键是证明△ACE≌△BCD,得到三角形的面积相等,对应边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程:
(1)4-x=2-3x;                        
(2)$\frac{x+3}{4}$-$\frac{1+x}{8}$=1;
(3)3x-4(2x+5)=x+4;                      
(4)x-$\frac{x-1}{2}$=2-$\frac{x+2}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简,后求值:2(x2y-xy)-(x2y-2xy)+4x2y,其中x=-1,y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解一元二次方程:
(1)x(2x-1)=3(1-2x);  
(2)2x2-1=-4x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,
(1)求直线AB的函数表达式;
(2)若点Q在是该抛物线上直线AB的下方的一点,作QE∥y轴交AB于E,求EQ的最大值;
(3)点M是y轴上的点,且△ABM为直角三角形,直接写出所有符合条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB是⊙O的直径,E为⊙O上一点,EF⊥AB于E,连接OE,AC∥OE,OD⊥AC于D,若BF=2,EF=4,求线段AC长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算题:
(1)-1$\frac{3}{4}$-(-$\frac{1}{8}$)+3$\frac{3}{8}$+(-2$\frac{1}{4}$);             
(2)-3.5÷(-$\frac{7}{8}$)×(-$\frac{3}{4}$);
(3)-10+8÷(-2)2-(-4)×(-3);            
(4)-14-$\frac{1}{6}$×[2-(-3)2];
(5)3a2-2a+4a2-7a;                 
(6)2(2a2+9b)+(-3a2-4b).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算
(1)(-1)2+($\frac{1}{2}$)-1-5÷(2010-π)0
(2)$\frac{y}{{x}^{2}-xy}$+$\frac{x+y}{2x-2y}$
(3)(2ab2c-3-2÷(a-2b)3
(4)$\frac{{x}^{2}}{x-y}$-x+y.

查看答案和解析>>

同步练习册答案