精英家教网 > 初中数学 > 题目详情
如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.
(1)∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC=∠COB=90°,
∴△AOC△COB,(1分)
OA
OC
=
OC
OB

又∵A(-1,0),B(9,0),
1
OC
=
OC
9

解得OC=3(负值舍去).
∴C(0,-3),
故设抛物线解析式为y=a(x+1)(x-9),
∴-3=a(0+1)(0-9),解得a=
1
3

∴二次函数的解析式为y=
1
3
(x+1)(x-9),
即y=
1
3
x2-
8
3
x-3.(4分)

(2)∵AB为O′的直径,且A(-1,0),B(9,0),
∴OO′=4,O′(4,0),(5分)
∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,
∴∠BCD=
1
2
∠BCE=
1
2
×90°=45°,
连接O′D交BC于点M,
则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
1
2
AB=5.
∴O′D⊥x轴
∴D(4,-5).(6分)
∴设直线BD的解析式为y=kx+b(k≠0)
9k+b=0
4k+b=-5
(7分)
解得
k=1
b=-9

∴直线BD的解析式为y=x-9.(8分)

(3)假设在抛物线上存在点P,使得∠PDB=∠CBD,
解法一:设射线DP交⊙O′于点Q,则
BQ
=
CD

分两种情况(如图所示):
①∵O′(4,0),D(4,-5),B(9,0),C(0,-3).
∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,
因此,点Q1(7,-4)符合
BQ
=
CD

∵D(4,-5),Q1(7,-4),
∴用待定系数法可求出直线DQ1解析式为y=
1
3
x-
19
3
.(9分)
解方程组
y=
1
3
x-
19
3
y=
1
3
x2-
8
3
x-3

x1=
9-
41
2
y1=
-29-
41
6
x2=
9+
41
2
y2=
-29+
41
6

∴点P1坐标为(
9+
41
2
-29+
41
6
),坐标为(
9-
41
2
-29-
41
6
)不符合题意,舍去.(10分)
②∵Q1(7,-4),
∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合
BQ
=
CD

∵D(4,-5),Q2(7,4).
∴用待定系数法可求出直线DQ2解析式为y=3x-17.(11分)
解方程组
y=3x-17
y=
1
3
x2-
8
3
x-3

x1=3
y1=-8

x2=14
y2=25

∴点P2坐标为(14,25),坐标为(3,-8)不符合题意,舍去.(12分)
∴符合条件的点P有两个:P1
9+
41
2
-29+
41
6
),P2(14,25).

解法二:分两种情况(如图所示):
①当DP1CB时,能使∠PDB=∠CBD.
∵B(9,0),C(0,-3).
∴用待定系数法可求出直线BC解析式为y=
1
3
x-3.
又∵DP1CB,
∴设直线DP1的解析式为y=
1
3
x+n.
把D(4,-5)代入可求n=-
19
3

∴直线DP1解析式为y=
1
3
x-
19
3
.(9分)
解方程组
y=
1
3
x-
19
3
y=
1
3
x2-
8
3
x-3

x1=
9-
41
2
y1=
-29-
41
6
x2=
9+
41
2
y2=
-29+
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3交x轴于点A(x1,0)、B(-1,0)且x1>0,AO2+BO2=10,抛物线交y轴于点C,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)证明△ADC是直角三角形;
(3)第一象限内,在抛物线上是否存在一点E,使∠ECO=∠ACB?若存在,求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线x=
7
2
的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
))

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;
(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;
(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最
大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点建立如图所示的直角坐标系,设P、Q分别为AB、OB边上的动点,他们同时分别从点A、O向B点匀速移动,移动的速度都是1厘米/秒,设P、Q移动时间为t秒(0≤t≤4)
(1)试用t的代数式表示P点的坐标;
(2)求△OPQ的面积S(cm2)与t(秒)的函数关系式;当t为何值时,S有最大值,并求出S的最大值;
(3)试问是否存在这样的时刻t,使△OPQ为直角三角形?如果存在,求出t的值,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案