精英家教网 > 初中数学 > 题目详情
(1)如图1,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.
(2)如图2,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=
32
,AC=2,请你求出cosB的值.
分析:(1)欲证CD=BF,需证△CDE≌△BFE.由于四边形ABCD是平行四边形,所以DC∥BF,∠1=∠3,∠C=∠2.又点E为BC边的中点,根据AAS,所以△CDE≌△BFE;
(2)由圆周角定理可知∠B=∠D,所以只需在Rt△ACD中,求出∠D的余弦值即可.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴DC∥AB,即DC∥AF.
∴∠1=∠F,∠C=∠2.
∵E为BC的中点,
∴CE=BE.
∴△DCE≌△FBE.
∴CD=BF;

(2)解:∵AD是⊙O的直径,r=
3
2
,∴∠ACD=90°,AD=3,
∵AC=2,
CD=
32-22
=
5

cosD=
5
3

∵∠B和∠D是同弧所对的圆周角,
∴∠B=∠D,
cosB=cosD=
5
3
点评:(1)本题考查全等三角形的判定和性质,解题的关键是灵活应用平行四边形的各个性质;
(2)此题主要考查的是圆周角定理、勾股定理以及锐角三角函数的定义;能够根据圆周角定理将所求角转化到直角三角形中,是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一张折叠型方桌如图甲,其主视图如图乙,已知AO=BO=40cm,C0=D0=30cm,现将桌子放平,两条桌腿叉开的角度∠AOB刚好为120°,则桌面到地面的距离是
35
35
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
【小题1】第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

【小题2】第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

【小题3】探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

查看答案和解析>>

科目:初中数学 来源:2012届江苏江阴南菁中学九年级中考适应性训练数学试卷(带解析) 题型:解答题

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
【小题1】第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

【小题2】第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

【小题3】探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省江阴市九年级5月中考适应性训练(二模)数学试卷(解析版) 题型:解答题

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(2)第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

(3)探究活动结束后,老师给大家留下了一道探究题:

如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,

请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏江阴南菁中学九年级中考适应性训练数学试卷(解析版) 题型:解答题

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

1.第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

2.第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

3.探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

 

查看答案和解析>>

同步练习册答案