精英家教网 > 初中数学 > 题目详情
(2013•松北区一模)如图,P为△ABC内一点,∠BAC=30°,∠ACB=90°,∠BPC=120°.若BP=
3
,则△PAB的面积为
3
3
2
3
3
2
分析:如图,作△BPC的外接圆⊙O,交AC的延长线于D,连接BD、PD.利用切线的性质和圆内接四边形的内对角互补得到∠BDA=180°-∠BPC=60°,所以∠ABD=180°-∠BAC-∠BDA=90°,即AB是⊙O的切线.设∠ABP=∠BDP=α.通过解直角△ABD、△BPD求得AB、AP的长度,然后由三角形的面积公式S=
1
2
absinC进行计算即可.
解答:解:如图,作△BPC的外接圆⊙O,交AC的延长线于D,连接BD、PD.
∵∠ACB=90°,
∴∠BCD=90°,
∴BD是⊙O的直径.
∵四边形BDCP是圆内接四边形,
∴∠BDA=180°-∠BPC=60°,
∴∠ABD=180°-∠BAC-∠BDA=180°-30°-60°=90°,则AB是⊙O的切线.
设∠ABP=∠BDP=α.
在直角△ABD中,AB=BD•tan∠BDA=
3
BD,
在直角△BPD中,BP=BD•sin∠BDP=BDsinα=
3

则△PAB的面积是:
1
2
AB•BPsin∠ABP=
1
2
×
3
BD×
3
sinα=
3
3
2
点评:本题考查了圆的综合题.其中涉及到了圆周角定理,圆内接四边形的性质,解直角三角形以及三角形的面积计算.此题的难点是作出△BPC的外接圆⊙O.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•松北区一模)因式分解:2ax2-4ax+2a=
2a(x-1)2
2a(x-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松北区一模)小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松北区一模)方程
5
x+2
=
3
2-x
的解是
x=
1
2
x=
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松北区一模)已知△ABC中,AC=BC=8,∠ACB=90°,D是直线AC上一点,CD:AC=1:2,折叠△ABC,使B落在D点上,则折痕长为
5
5
3
5
5
3

查看答案和解析>>

同步练习册答案