精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数x0)的图象交于点B(﹣2,n),过点BBCx轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.

(1)求m的值;

(2)若DBC=∠ABC,求一次函数y=kx+b的表达式.

【答案】1)-6;(2

【解析】试题分析:(1)由点B(﹣2n)、D33n1)在反比例函数x0)的图象上可得﹣2n=33n,即可得出答案;

2)由(1)得出BD的坐标,作DEBC.延长DEAB于点F,证△DBE≌△FBEDE=FE=4,即可知点F21),再利用待定系数法求解可得.

试题解析:(1)∵点B(﹣2n)、D33n1)在反比例函数x0)的图象上,∴,解得:

2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣23)、D(﹣61),

如图,过点DDEBC于点E,延长DEAB于点F

在△DBE和△FBE中,∵∠DBE=∠FBEBE=BE,∠BED=∠BEF=90°,

∴△DBE≌△FBEASA),∴DE=FE=4

∴点F21),将点B(﹣23)、F21)代入y=kx+b

,解得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数y=y=kx2-k(k≠0)在同一直角坐标系中的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在一块长为22 m宽为17 m的矩形地面上要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪使草坪面积为300 m2.若设道路宽为x m根据题意可列出方程为______________________________

【答案】(22-x)(17-x)=300(或x2-39x+74=0)

【解析】试题分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.设道路的宽应为x米,由题意有(22﹣x)(17﹣x=300,故答案为:(22﹣x)(17﹣x=300

考点:由实际问题抽象出一元二次方程.

型】填空
束】
17

【题目】x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则此方程的另一个根是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BPCP的延长线分别交AD于点EF,连结BDDPBDCF相交于点H,给出下列结论:①BE2AE;②△DFP∽△BPH;③DP2PHPC;④FEBC,其中正确的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系xOy中,对称轴为直线x = -2的抛物线经过点C(02),与x轴交于A(-30)B两点(A在点B的左侧).

(1)求这条抛物线的表达式.

(2)连接BC,求∠BCO的余切值.

(3)如果过点C的直线,交x轴于点E,交抛物线于点P,且∠CEO =BCO,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+ca0)的图象的一部分,给出下列命题:

a+b+c0

b2a

ax2+bx+c0的两根分别为﹣31

c=﹣3a

其中正确的命题是(  )

A.①②B.②③C.①③D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交于点,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果公司新购进10000千克柑橘,每千克柑橘的成本为9. 柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行柑橘损坏率统计,并把获得的数据记录如下:

柑橘总重量n/千克

50

100

150

200

250

300

350

400

450

500

损坏柑橘重量m/千克

5.50

10.50

15.15

19.42

24.25

30.93

35.32

39.24

44.57

51.54

柑橘损坏的频率

0.110

0.105

0.101

0.097

0.097

0.103

0.101

0.098

0.099

0.103

根据以上数据,估计柑橘损坏的概率为 (结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每千克的售价至少为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

学习函数知识后,对于一些特殊的不等式,我们可以借助函数图象来求出它的解集,例如求不等式x3的解集,我们可以在同一坐标系中,画出直线y1x3与函数y2的图象(如图1),观察图象可知:它们交于点A(﹣1,﹣4),B41).当﹣1x0,或x4时,y1y2,即不等式x3的解集为﹣1x0,或x4

小东根据学习以上知识的经验,对求不等式x3+3x2x30的解集进行了探究.下面是小东的探究过程,请补充完整:

1)将不等式按条件进行转化:当x0时,原不等式不成立;x0时,原不等式转化为x2+3x1;当x0时,原不等式转化为______

2)构造函数,画出图象:设y3x2+3x1y4,在同一坐标系(图2)中分别画出这两个函数的图象.

3)借助图象,写出解集:观察所画两个函数的图象,确定两个函数图象交点的横坐标,结合(1)的讨论结果,可知:不等式x3+3x2x30的解集为______

查看答案和解析>>

同步练习册答案