精英家教网 > 初中数学 > 题目详情

【题目】(1) 如图1,MA1NA2,则∠A1+A2=_________度.

如图2,MA1NA3,则∠A1+A2+A3=_________ 度.

如图3,MA1NA4,则∠A1+A2+A3+A4=_________度.

如图4,MA1NA5,则∠A1+A2+A3+A4+A5=_________度.

如图5,MA1NAn,则∠A1+A2+A3+…+An=_________ 度.

(2) 如图,已知AB∥CD,∠ABE∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.

【答案】(1) 180; 360; 540;720;180(n-1);(2)140°.

【解析】试题分析:(1)首先过各点作MA 1 的平行线,由MA 1 ∥NA 2 可得各线平行,根据两直线平行,同旁内角互补,即可求得答案

(2)(1)中的规律可得∠ABE+∠E+∠CDE=360°,所以∠ABE+∠CDE=360°-80°=280°,又因为BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=140°,又因为四边形的内角和为360°,进而可得答案.

试题解析:(1)如图1,

∵MA 1 ∥NA 2

∴∠A 1 +∠A 2 =180°.

如图2,过点A 2 A 2 C 1 ∥A 1 M,

∵MA 1 ∥NA 3

∴A 2 C 1 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 3 =180°,

∴∠A 1 +∠A 2 +∠A 3 =360°.

如图3,过点A 2 A 2 C 1 ∥A 1 M,过点A 3 A 3 C 2 ∥A 1 M,

∵MA 1 ∥NA 3

∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 4 =180°,

∴∠A 1 +∠A 2 +∠A 3 +∠A 4 =540°.

如图4,过点A 2 A 2 C 1 ∥A 1 M,过点A 3 A 3 C 2 ∥A 1 M,

∵MA 1 ∥NA 3

∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 3 A 4 C 3 =180°,∠C 3 A 4 A 5 +∠A 5 =180°,

∴∠A 1 +∠A 2 +∠A 3 +∠A 4 +∠A 5 =720°;

从上述结论中你发现了规律:如图5,MA 1 ∥NA n ,则∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度,

故答案为:180,360,540,720,180(n-1);

(2)由(1)可得∠ABE+∠E+∠CDE=360°,

∵∠E=80°,

∴∠ABE+∠CDE=360°-80°=280°,

又∵BF、DF平分∠ABE和∠CDE,

∴∠FBE+∠FDE=140°,

∵∠FBE+∠E+∠FDE+∠BFD=360°,

∴∠BFD=360°-80°-140°=140°.

【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补四边形的内角和是360°,解题的关键是,(1)小题正确添加辅助线,发现规律:MA 1 ∥NA n ,则∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度;(2)小题能应用(1)中发现的规律.

型】解答
束】
28

【题目】已知如图1,线段ABCD相交于点O,连结ACBD,我们把形如图1的图形称之为“8字形,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:

(1)在图1中,请写出∠ABCD之间的数量关系,并说明理由;

(2)仔细观察,在图2“8字形的个数有

(3)在图2中,若∠B76°C80°CAB和∠BDC的平分线APDP相交于点P,并且与CDAB分别相交于MN利用(1)的结论,试求∠P的度数;

(4)在图3中,如果∠B和∠C为任意角,并且APDP分别是∠CAB和∠BDC的三等分线,即∠PAOCAO BDPBOD,那么∠P与∠CB之间存在的数量关系是 (直接写出结论即可).

【答案】(1) A+C=B+D证明见解析;26;(378°;(4P=

【解析】试题分析:(1)根据对顶角相等和三角形内角和定理可得解;

2)根据“8字形的结构特点,根据交点写出“8字形的三角形,然后确定即可;

3)在图2中,由∠C=80°∠B=76°,可求∠P的度数;

4)由(3)中的结论可得解.

试题解析:(1)在△AOC中,∠AOC=180°-∠A-∠C

△DOB中,∠BOD=180°-∠D-∠B

∵∠AOC=∠BOD

∴180°-∠A-∠C=180°-∠D-∠B

∴∠A+∠C=∠B+∠D

2)交点有点MN各有1个,交点O4个,所以,“8字形图形共有6个;

3∵∠B76°∠C80°

∴∠OAC+80°=∠ODB+76°

∴∠ODB-∠OAC =4°

∵APDP分别是∠CAO∠BDO的角平分线

∴∠CAM=CAO,PDO=BDO

∵∠CAM+∠C=∠PDO+∠P

∴∠P=CAM+C-PDO= (CAO-BDO)+C=-2°+80°=78°

4)由(3)可知∠P=∠CAM+∠C-∠PDO

APDP分别是∠CAB∠BDC的三等分线时,则有

CAM=CAO,PDO=BDO

∴∠P= (CAO-BDO)+C,

由(3)知∠CAO-∠BDO=∠B-∠C

∴∠P=B-C+C=B+C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A﹣24),B42),C2﹣1

1)作ABC关于x轴的对称图形A1B1C1,写出点C关于x轴的对称点C1的坐标;

2Px轴上一点,请在图中画出使PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)发现:如图1,点A为线段BC外一动点,且BC=aAB=b

①填空:当点A位于   时,线段AC的长取得最大值,且最大值为   (用含ab的式子表示)

2)应用:点A为线段BC外一动点,且BC=3AB=1,如图2所示,分别以ABAC为边,作等边三角形ABD和等边三角形ACE,连接CDBE

①请找出图中与BE相等的线段,并说明理由;

②直接写出线段BE长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC内接于O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CFBD.

(1)求证:BE=CE;

(2)试判断四边形BFCD的形状,并说明理由;

(3)若BC=8,AD=10,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点AAP的垂线交射线PB于点C,当PAB是等腰三角形时,线段BC的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a>0)个成品,且每个车间每天都生产b(b>0)个成品,质量科派出若干名检验员周一、周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.

(1)这若干名检验员1天共检验多少个成品?(用含a、b的代数式表示)

(2)若一名检验员1天能检验b个成品,则质量科至少要派出多少名检验员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数a≠0)的图象如图所示,则下列命题中正确的是(  )

A. a bc

B. 一次函数y=ax +c的图象不经第四象限

C. mam+b+bam是任意实数)

D. 3b+2c0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据官方数据统计,70周年国庆阅兵网上总观看人次突破513000000,最高同时在线人数突破600万.将513000000用科学记数法表示应为(  )

A.5.13×108B.5.13×109C.513×106D.0.513×109

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=30°∠B=62°CE平分∠ACBCD⊥ABDDF⊥CEF,求∠CDF的度数.

查看答案和解析>>

同步练习册答案