分析 根据角平分线的定义可得∠IBC=$\frac{1}{2}$∠ABC,∠ICB=$\frac{1}{2}$∠ACB,然后表示出∠IBC+∠ICB,再根据三角形的内角和等于180°列式整理即可得证.
解答 证明:∵∠ABC与∠ACB的平分线相交于点I,
∴∠IBC=$\frac{1}{2}$∠ABC,∠ICB=$\frac{1}{2}$∠ACB,
∴∠IBC+∠ICB=$\frac{1}{2}$(∠ABC+∠ACB),
在△IBC中,∠BIC=180°-(∠IBC+∠ICB)
=180°-$\frac{1}{2}$(∠ABC+∠ACB)
=180°-$\frac{1}{2}$(180°-∠BAC)
=90°+$\frac{1}{2}$∠BAC,
即:∠BIC=90°+$\frac{1}{2}$∠BAC.
点评 本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (3$\sqrt{2}$,0) | B. | (6,0) | C. | (3$\sqrt{3}$,0) | D. | (5,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com