已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.
答案:(1)由已知条件,得n2-1=0 解这个方程,得n1=1,n2=-1 当n=1时,得y=x2+x,此抛物线的顶点不在第四象限. 当n=-1时,得y=x2-3x,此抛物线的顶点在第四象限. ∴所求的函数关系为y=x2-3x. (2)由y=x2-3x,令y=0,得x2-3x=0,解得x1=0,x2=3 ∴抛物线与x轴的另一个交点为(3,0) ∴它的顶点为(,),对称轴为直线x=,其大致位置如图所示, ①∵BC=1,由抛物线和矩形的对称性易知OB=×(3-1)=1. ∴B(1,0) ∴点A的横坐标x=1,又点A在抛物线y=x2-3x上, ∴点A的纵坐标y=12-3×1=-2. ∴AB=|y|=|-2|=2. ∴矩形ABCD的周长为:2(AB+BC)=2×(2+1)=6. ②∵点A在抛物线y=x2-3x上,故可设A点的坐标为(x,x2-3x), ∴B点的坐标为(x,0).(0<x<) ∴BC=3-2x,A在x轴下方, ∴x2-3x<0, ∴AB=|x2-3x|=3x-x2 ∴矩形ABCD的周长 P=2[(3x-x2)+(3-2x)]=-2(x-)2+ ∵a=-2<0, ∴当x=时,矩形ABCD的周长P最大值为. 此时点A的坐标为A(,). |
科目:初中数学 来源:2013年辽宁省营口市中考模拟(一)数学试卷(带解析) 题型:解答题
如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是 ,b= ,c= ;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2013年辽宁省营口市中考模拟(一)数学试卷(解析版) 题型:解答题
如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是 ,b= ,c= ;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2011届江苏省太仓市九年级上学期期中考试数学卷 题型:填空题
已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2011的值是 ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com