精英家教网 > 初中数学 > 题目详情
(2012•鞍山)如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=
13
,延长OE到点F,使EF=2OE.
(1)求⊙O的半径;
(2)求证:BF是⊙O的切线.
分析:(1)连OA,由直径CE⊥AB,根据垂径定理可得到AD=BD=2,弧AE=弧BE,利用圆周角定理得到∠ACE=∠BCE,∠AOB=2∠ACB,且∠AOE=∠BOE,则∠BOE=∠ACB,可得到cos∠BOD=cos∠ACB=
1
3
,在Rt△BOD中,设OD=x,则OB=3x,利用勾股定理可计算出x=
2
2
,则OB=3x=
3
2
2

(2)由于FE=2OE,则OF=3OE=
9
2
2
,则
OB
OF
=
1
3
,而
OD
OB
=
1
3
,于是得到
OB
OF
=
OD
OB
,根据相似三角形的判定即可得到△OBF∽△ODB,根据相似三角形的性质有∠OBF=∠ODB=90°,然后根据切线的判定定理即可得到结论.
解答:(1)解:连OA,如图,
∵直径CE⊥AB,
∴AD=BD=2,弧AE=弧BE,
∴∠ACE=∠BCE,∠AOE=∠BOE,
又∵∠AOB=2∠ACB,
∴∠BOE=∠ACB,
而cos∠ACB=
1
3

∴cos∠BOD=
1
3

在Rt△BOD中,设OD=x,则OB=3x,
∵OD2+BD2=OB2
∴x2+22=(3x)2,解得x=
2
2

∴OB=3x=
3
2
2

即⊙O的半径为
3
2
2


(2)证明:∵FE=2OE,
∴OF=3OE=
9
2
2

OB
OF
=
1
3

OD
OB
=
1
3

OB
OF
=
OD
OB

而∠BOF=∠DOB,
∴△OBF∽△ODB,
∴∠OBF=∠ODB=90°,
∵OB是半径,
∴BF是⊙O的切线.
点评:本题考查了圆的综合题:垂直于弦的直径平分弦,并且平分弦所对的弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角的度数的一半;过半径的外端点与半径垂直的直线是圆的切线;运用三角形相似证明角度相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•鞍山)如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是
25°
25°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=
12
,则∠D的度数是
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(
3
≈1.732,结果保留三个有效数字).

查看答案和解析>>

同步练习册答案