精英家教网 > 初中数学 > 题目详情
2.不等式组$\left\{\begin{array}{l}{5x-4≤2x+5}\\{2x+7<3x+6}\end{array}\right.$的整数解的和为5.

分析 求出不等式组的解集,找出解集中的所有整数解,求出之和即可.

解答 解:$\left\{\begin{array}{l}{5x-4≤2x+5①}\\{2x+7<3x+6②}\end{array}\right.$,
由①得:x≤3;
由②得:x>1,
故不等式组的解集为1<x≤3,即整数解为:2,3,
则原不等式的所有整数解的和为2+3=5.
故答案为:5.

点评 此题考查了一元一次不等式组的整数解,以及一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.计算(-4a-1)(-4a+1)的结果为(  )
A.16a2-1B.-8a2-1C.-4a2+1D.-16a2+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若am=3,an=5,则am-n=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若反比例函数y=$\frac{k}{x}$的图象经过点(-1,2),则这个反比例函数的图象还经过点(  )
A.(2,-1)B.(-$\frac{1}{2}$,1)C.(-2,-1)D.($\frac{1}{2}$,2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.化简:$\frac{{x}^{2}}{{x}^{2}+4x+4}$÷$\frac{x}{x+2}$=(  )
A.xB.$\frac{1}{x+2}$C.$\frac{x}{x+2}$D.x+2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.

回答下列问题:
(1)这次被抽查的学生共有120人,扇形统计图中,“B组”所对应的圆心角的度数为72°;
(2)补全条形统计图;
(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在平面直角坐标系中将△ABC绕点C(0,-1)旋转180°得到△A1B1C1,设点A1的坐标为(m,n),则点A的坐标为(  )
A.(-m,-n)B.(-m,-n-2)C.(-m,-n-1)D.(-m,-n+1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.为了测量校园内旗杆AB的高度,小明和小丽同学分别采用了如下方案:
(1)小明的方案:如图1,小明在地面上点C处观测旗杆顶部,测得仰角,∠ACB=45°然后他向旗杆反方向前进20米,此时在点D处观测旗杆顶部,测得仰角∠ADB=26.6°.根据小明的方案求旗杆AB的高度.
(2)小丽的方案:如图2,小丽在地面上点C处观测旗杆顶部,测得仰角∠ACB=45°,然后从点C爬到10米高的楼上的点E处(CE⊥BC),观测旗杆顶部,测得仰角∠AEF=α.根据小丽的方案所求旗杆AB的高度为米.(用含α的式子表示)
(参考数据:sin26.6°≈0.45,tan26.6°≈0.50)

查看答案和解析>>

同步练习册答案