精英家教网 > 初中数学 > 题目详情

一张正方形纸片ABCD,第一次对折,使BC与AD重合,得到折痕EF(如图(a));第二次对折使DF与AE重合(如图(b));第三次对折,沿对角线AO对折,使E与G重合,此时用剪刀沿GH剪掉△AGH,其中OH=OG,然后展开展平(如图(c)).

(1)你得到了一个什么图形?

(2)它是轴对称图形吗?

(3)它是旋转对称图形吗?如是,请指出旋转中心和旋转角?

(4)它是中心对称图形吗?

答案:
解析:

  (1)正八边形

  (2)是轴对称图形

  (3)是旋转对称图形,

  (4)是中心对称图形


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有两个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一张直角三角形纸片ABC沿中位线DE剪开后在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,AC=
12
AB
,求证:∠B=30°,请你完成证明过程.
(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.
(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在长为44,宽为12的矩形PQRS中,将一张直角三角形纸片ABC和一张正方形纸片DEFG如图放置,其中边AB、DE在PQ上,边EF在QR上,边BC、DG在同一直线上,且Rt△ABC两直角边BC=6,AB=8,正方形DEFG的边长为4.从初始时刻开始,三角形纸片ABC,沿AP方向以每秒1个单位长度的速度向左平移;同时正方形纸片DEFG,沿QR方向以每秒2个单位长度的速度向上平移,当边GF落在SR上时,纸片DEFG立即沿RS方向以原速度向左平移,直至G点与S点重合时,两张纸片同时停止移动.设平移时间为x秒.
(1)请填空:当x=2时,CD=
2
2
2
2
,DQ=
4
2
4
2
,此时CD+DQ
=
=
CQ(请填“<”、“=”、“>”);
(2)如图2,当纸片DEFG沿QR方向平移时,连接CD、DQ和CQ,求平移过程中△CDQ的面积S与x的函数关系式,并写出自变量x的取值范围(这里规定线段的面积为零);
(3)如图3,当纸片DEFG沿RS方向平移时,是否存在这样的时刻x,使以A、C、D为顶点的三角形是等腰三角形?若存在,求出对应x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案