精英家教网 > 初中数学 > 题目详情
17.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,若∠AOE=42°,求∠BOD的度数.

分析 根据OA⊥OB可知∠AOB=90°,根据∠AOE=42°和根据OC平分∠AOF和∠AOF+∠AOE=180°,求出∠BOD的大小.

解答 解:∵OA⊥OB,
∴∠AOB=90°,
又∵∠AOE=42°,
∴∠AOF=180°-42°=138°,
又∵OC平分∠AOF,
∴∠AOC=138°×$\frac{1}{2}$=69°,
∴∠BOD=180°-90°-69°=21°.

点评 本题考查了角的运算,涉及垂线、角平分线、邻补角等概念,是一道关于角的综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,已知一条直线经过点A(0,3)、点B(2,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,求直线CD的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知α为锐角,当$\frac{tanα+1}{2}$=1时,求sin(α-15°)+$\sqrt{3}sin(α+15°)$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.【问题背景】
已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2,我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.

【问题探究】
(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为$\sqrt{10}$.
(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.
【问题拓展】
(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G,将∠AEG绕点A顺时针旋转30°,得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′C′,分别在直线l2,l4上,求菱形AB′C′D′的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.观察如图所示的图形,判断照此规律从左向右第2013个图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.四个电子宠物排座位,一开始,鼠、猴、虎、猫分别坐在1、2、3、4号座位上,以后不停地变换位置,第一次上下两行交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两行交换,第四次再左右两列交换…这样一直下去,则第2013次交换位置后,老虎所在的号位是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.一组互不相同的数据3、4、6、7、x的中位数是x,若这组数据都是整数,这组数据中的x是(  )
A.4B.6C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若x轴上的P点到y轴距离为3,则P点的坐标为(3,0)或(-3,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2$\sqrt{5}$.
(1)求点D的坐标,并直接写出t的取值范围.
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.

查看答案和解析>>

同步练习册答案