11£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ò»´Îº¯Êýy=$\frac{5}{4}$x+m£¨mΪ³£Êý£©µÄͼÏóÓëxÖá½»ÓÚµãA£¨-3£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬ÒÔÖ±Ïßx=1Ϊ¶Ô³ÆÖáµÄÅ×ÎïÏßy=ax2+bx+c£¨a¡¢b¡¢cΪ³£Êý£¬ÇÒa¡Ù0£©¾­¹ýA¡¢CÁ½µã£¬²¢ÓëxÖáµÄÕý°ëÖá½»ÓÚµãB
£¨1£©ÇómµÄÖµ¼°Å×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÊÇ·ñ´æÔÚÅ×ÎïÏßÉÏÒ»¶¯µãQ£¬Ê¹µÃ¡÷ACQÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãQµÄºá×ø±ê£»Èô´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôPÊÇÅ×ÎïÏ߶ԳÆÖáÉÏÒ»¶¯µã£¬ÇÒʹ¡÷ACPÖܳ¤×îС£¬¹ýµãPÈÎÒâ×÷Ò»ÌõÓëyÖ᲻ƽÐеÄÖ±Ïß½»Å×ÎïÏßÓÚM1£¨x1£¬y1£©£¬M2£¨x2£¬y2£©Á½µã£¬ÊÔÎÊ$\frac{{M}_{1}P•{M}_{2}P}{{M}_{1}{M}_{2}}$ÊÇ·ñΪ¶¨Öµ£¬Èç¹ûÊÇ£¬ÇëÇó³ö½á¹û£¬Èç¹û²»ÊÇÇë˵Ã÷ÀíÓÉ£®
£¨²Î¿¼¹«Ê½£ºÔÚƽÃæÖ±½Ç×ø±êÖ®ÖУ¬ÈôA£¨£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòA£¬BÁ½µã¼äµÄ¾àÀëΪAB=${\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}}^{\;}$£©

·ÖÎö £¨1£©°ÑA£¨-3£¬0£©´úÈëy=$\frac{5}{4}$x+m£¬¼´¿ÉÇó³ömµÄÖµ£¬µÃµ½Ò»´Îº¯ÊýµÄ½âÎöʽ£¬ÔÙÇó³öCµã×ø±ê£®¸ù¾ÝÅ×ÎïÏßy=ax2+bx+cµÄ¶Ô³ÆÖáÊÇÖ±Ïßx=1£¬ÇÒ¾­¹ýA¡¢C£¬Áгö¹ØÓÚa¡¢b¡¢cµÄ·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó³öÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÉèQ£¨x£¬-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$£©£®Èç¹û¡÷ACQÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐÎʱ£¬·ÖÁ½ÖÖÇé¿ö£º¢ÙµãCΪֱ½Ç¶¥µãʱ£¬×÷CQ¡ÍAC½»Å×ÎïÏßÓÚµãQ£¬QE¡ÍyÖáÓÚE£®Ö¤Ã÷¡÷ACO¡×¡÷CQE£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÇó³öxµÄÖµ£»¢ÚµãAΪֱ½Ç¶¥µãʱ£¬×÷AQ¡ä¡ÍAC½»Å×ÎïÏßÓÚµãQ¡ä£¬Q¡äE¡ä¡ÍxÖáÓÚE£®Ö¤Ã÷¡÷ACO¡×¡÷Q¡äAE¡ä£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÇó³öxµÄÖµ£»
£¨3£©¡÷ACPÖܳ¤×îСʱ£¬PΪֱÏßBCÓë¶Ô³ÆÖáµÄ½»µã£®¸ù¾Ý¶þ´Îº¯ÊýµÄ¶Ô³ÆÐÔÇó³öBµã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽ£¬°Ñx=1´úÈ룬ÇóµÃPµã×ø±êΪ£¨1£¬3£©£®Éè¹ýµãPµÄÖ±ÏßΪ£ºy=kx+3-k£¬°Ñy=kx+3-k´úÈëy=-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$£¬ÕûÀíµÃµ½x2+£¨4k-2£©x-4k-3=0£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃ³öx1+x2=2-4k£¬x1x2=-4k-3£¬ÇÒy1-y2=k£¨x1-x2£©£¬È»ºó¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽÇó³öM1M2=${\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}}^{\;}$=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}}$=4£¨1+k2£©£¬M1P=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}-1£©^{2}}$£¬M2P=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{2}-1£©^{2}}$£¬ÄÇôM1P•M2P=4£¨1+k2£©£¬½ø¶øµÃ³ö$\frac{{M}_{1}P•{M}_{2}P}{{M}_{1}{M}_{2}}$=1Ϊ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßÒ»´Îº¯Êýy=$\frac{5}{4}$x+m£¨mΪ³£Êý£©µÄͼÏóÓëxÖá½»ÓÚµãA£¨-3£¬0£©£¬
¡à0=$\frac{5}{4}$¡Á£¨-3£©+m£¬½âµÃm=$\frac{15}{4}$£¬
¡àÒ»´Îº¯Êý½âÎöʽΪy=$\frac{5}{4}$x+$\frac{15}{4}$£¬
¡àCµã×ø±êΪ£¨0£¬$\frac{15}{4}$£©£®
¡ßÒÔÖ±Ïßx=1Ϊ¶Ô³ÆÖáµÄÅ×ÎïÏßy=ax2+bx+c£¨a¡¢b¡¢cΪ³£Êý£¬ÇÒa¡Ù0£©¾­¹ýA£¨-3£¬0£©¡¢C£¨0£¬$\frac{15}{4}$£©£¬
¡à$\left\{\begin{array}{l}{-\frac{b}{2a}=1}\\{9a-3b+c=0}\\{c=\frac{15}{4}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{4}}\\{b=\frac{1}{2}}\\{c=\frac{15}{4}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĺ¯Êý±í´ïʽΪy=-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$£»

£¨2£©´æÔÚ£®ÉèQ£¨x£¬-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$£©£®
¢Ùµ±µãCΪֱ½Ç¶¥µãʱ£¬Èçͼ£¬×÷CQ¡ÍAC½»Å×ÎïÏßÓÚµãQ£¬QE¡ÍyÖáÓÚE£®
ÔÚ¡÷ACOÓë¡÷CQEÖУ¬
$\left\{\begin{array}{l}{¡ÏACO=¡ÏCQE=90¡ã-¡ÏQCE}\\{¡ÏAOC=¡ÏCEQ}\end{array}\right.$£¬
¡à¡÷ACO¡×¡÷CQE£¬
¡à$\frac{QE}{CO}$=$\frac{CE}{AO}$£¬¼´$\frac{x}{\frac{15}{4}}$=$\frac{\frac{15}{4}-£¨-\frac{1}{4}{x}^{2}+\frac{1}{2}x+\frac{15}{4}£©}{3}$£¬
½âµÃx1=5.2£¬x2=0£¨²»ºÏÌâÒâÉáÈ¥£©£»
¢Úµ±µãAΪֱ½Ç¶¥µãʱ£¬Èçͼ£¬×÷AQ¡ä¡ÍAC½»Å×ÎïÏßÓÚµãQ¡ä£¬Q¡äE¡ä¡ÍxÖáÓÚE£®
ÔÚ¡÷ACOÓë¡÷Q¡äAE¡äÖУ¬
$\left\{\begin{array}{l}{¡ÏOAC=¡ÏE¡äQ¡äA=90¡ã-¡ÏOAQ¡ä}\\{¡ÏAOC=¡ÏQ¡äE¡äA}\end{array}\right.$£¬
¡à¡÷ACO¡×¡÷Q¡äAE¡ä£¬
¡à$\frac{AE¡ä}{CO}$=$\frac{Q¡äE¡ä}{AO}$£¬¼´$\frac{x+3}{\frac{15}{4}}$=$\frac{\frac{1}{4}{x}^{2}-\frac{1}{2}x-\frac{15}{4}}{3}$£¬
½âµÃx1=8.2£¬x2=-3£¨²»ºÏÌâÒâÉáÈ¥£©£®
×ÛÉÏËùÊö£ºQµãµÄºá×ø±êΪ5.2»ò8.2£»

£¨3£©¡ßy=-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$ÓëxÖá½»ÓÚA£¨-3£¬0£©¡¢BÁ½µã£¬¶Ô³ÆÖáΪֱÏßx=1£¬
¡àBµã×ø±êΪ£¨5£¬0£©£¬
¡ßC£¨0£¬$\frac{15}{4}$£©£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{3}{4}$x+$\frac{15}{4}$£¬
µ±x=1ʱ£¬y=-$\frac{3}{4}$¡Á1+$\frac{15}{4}$=3£¬
¡àP£¨1£¬3£©£®
Éè¹ýµãPµÄÖ±ÏßΪ£ºy=kx+3-k£¬
°Ñy=kx+3-k´úÈëy=-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$£¬
µÃkx+3-k=-$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{15}{4}$£¬
ÕûÀíµÃ£¬x2+£¨4k-2£©x-4k-3=0£¬
¡àx1+x2=2-4k£¬x1x2=-4k-3£¬y1-y2=k£¨x1-x2£©£¬
¡à£¨x1-x2£©2=£¨x1+x2£©2-4x1x2=£¨2-4k£©2-4£¨-4k-3£©=16k2+16£¬
¡àM1M2=${\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}}^{\;}$=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}}$=4£¨1+k2£©£¬
ͬÀí£ºM1P=$\sqrt{£¨{x}_{1}-1£©^{2}+£¨k{x}_{1}+3-k-3£©^{2}}$=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}-1£©^{2}}$£¬
M2P=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{2}-1£©^{2}}$£¬
¡àM1P•M2P=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}-1£©^{2}}$•$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{2}-1£©^{2}}$=|£¨x1-1£©£¨x2-1£©|•£¨1+k2£©=4£¨1+k2£©£¬
¡à$\frac{{M}_{1}P•{M}_{2}P}{{M}_{1}{M}_{2}}$=1Ϊ¶¨Öµ£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½ÀûÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏß¡¢Ö±ÏߵĽâÎöʽ£¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Öá¶Ô³Æ-×î¶Ì·ÏßÎÊÌ⣬¸ùÓëϵÊýµÄ¹Øϵ£¬Á½µã¼äµÄ¾àÀ빫ʽµÈ֪ʶ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ¬µ«ÊǼÆËãÁ¿½Ï´ó£®ÀûÓ÷½³Ì˼Ïë¡¢ÊýÐνáºÏÓë·ÖÀàÌÖÂÛÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁе÷²éÖУ¬ÊÊÒ˲ÉÓÃÆղ鷽ʽµÄÊÇ£¨¡¡¡¡£©
A£®¹ú¼ÒÂÃÓξֵ÷²é¹úÃñ¶Ô¡°ÎåÒ»¡±ÆÚ¼ä³öÐÐÂÃÓεÄÂúÒâ³Ì¶È
B£®µ÷²éÖйúÃñÖÚ¶ÔÃÀ¹úÔÚº«²¿ÊðÈøµÂϵͳ³Ö·´¶Ô̬¶ÈµÄ±ÈÀý
C£®µ÷²éÖйú¹ú²úº½Ä¸¸÷Á㲿¼þµÄÖÊÁ¿
D£®µ÷²éÖØÇìÊгõ2017¼¶Ñ§ÉúµÄÖп¼Ì忼³É¼¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©¼ÆË㣺$\root{3}{27}$+|$\sqrt{5}$-2|-£¨$\frac{1}{3}$£©-2+£¨tan60¡ã-1£©0
£¨2£©ÏÈ»¯¼òÔÙÇóÖµ£º£¨$\frac{{{a^2}-5a+2}}{a+2}$+1£©¡Â$\frac{{{a^2}-4}}{{{a^2}+4a+4}}$£¬ÆäÖÐa=2+$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÒÑÖªËıßÐÎABCDºÍËıßÐÎDEFGΪÕý·½ÐΣ¬µãEÔÚÏ߶ÎDCÉÏ£¬µãA¡¢D¡¢GÔÚͬһֱÏßÉÏ£¬ÇÒAD=3£¬DE=1£¬Á¬½ÓAC¡¢CG¡¢AE£¬²¢ÑÓ³¤AE½»OGÓÚµãH£®
£¨1£©ÇóÖ¤£º¡ÏDAE=¡ÏDCG£®
£¨2£©ÇóÏ߶ÎHEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¼ÆË㣺8+£¨-3£©µÄ½á¹ûΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¼ÆË㣺£¨$\frac{2}{3}}$£©2¡Á£¨$\frac{3}{2}}$£©3=$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®²ÄÁÏ1£º
¾­¼Ãѧ¼Ò½«¼ÒÍ¥»ò¸öÈËÔÚʳƷÏû·ÑÉϵÄÖ§³öÓë×ÜÏû·ÑÖ§³öµÄ±ÈÖµ³Æ×÷¶÷¸ñ¶ûϵÊý£®¼´£º¶÷¸ñ¶ûϵÊý=$\frac{ʳƷÏû·ÑÖ§³ö×ܶî}{Ïû·ÑÖ§³ö×ܶî}$¡Á100%£®
¶÷¸ñ¶ûϵÊý¿ÉÒÔÓÃÀ´¿Ì»®²»Í¬µÄÏû·Ñ½á¹¹£¬Ò²Äܼä½Ó·´Ó³Ò»¸ö¹ú¼Ò£¨µØÇø£©²»Í¬µÄ·¢Õ¹½×¶Î£®ÁªºÏ¹úÁ¸Å©×éÖ¯µÄ¹æ¶¨Èç±íËùʾ£º
¶÷¸ñ¶ûϵÊý
´óÓÚ»òµÈÓÚ60%
¶÷¸ñ¶ûϵÊý
ÔÚ50%¡«60%Ö®¼ä
¶÷¸ñ¶ûϵÊý
ÔÚ40%¡«50%Ö®¼ä
¶÷¸ñ¶ûϵÊý
ÔÚ30%¡«40%Ö®¼ä
¶÷¸ñ¶ûϵÊý
СÓÚ30%
¾ø¶ÔƶÀ§Î ±¥Ð¡ ¿µ¸» Ô£×ԣ
£¨×¢£ºÔÚ50%-60%Ö®¼äÊÇÖ¸º¬50%£¬²»º¬60% µÄËùÓÐÊý¾Ý£¬ÒÔ´ËÀàÍÆ£©
²ÄÁÏ2£º
2014Äê2ÔÂ22ÈÕ¹ú¼Òͳ¼Æ¾ÖÉϺ£µ÷²é×ܶӱ¨µÀ£º2013ÄêÉϺ£ÊоÓÃñ¼ÒÍ¥Éú»îÏû·Ñ×ÜÖ§³öÈ˾ù13425Ôª£®ÆäÖÐʳƷ֧³öÈ˾ù5334Ôª£¨°üÀ¨Á¸Ê³Ö§³ö450Ôª£¬Ê߲˼°ÖÆÆ·Ö§³ö438Ôª£¬ÈâÇݵ°Ä̼°ÖÆÆ·Ö§³ö1393Ôª£¬Ë®²úÆ·Ö§³ö581Ôª£©£¬ÒÂ×ÅÖ§³öÈ˾ù771Ôª£¬¾Óס֧³öÈ˾ù2260Ôª£¬¹«ÓÃÊÂÒµÖ§³öÈ˾ù694Ôª£¬½»Í¨Í¨ÐÅÖ§³öÈ˾ù1719Ôª£¬ÎÄ»¯½ÌÓýÖ§³öÈ˾ù964Ôª£¬Ò½ÁƱ£½¡Ö§³öÈ˾ù1181Ôª£¬ÆäËüÖ§³öÈ˾ù502Ôª£®
¸ù¾ÝÉÏÊö²ÄÁÏ£¬
£¨1£©·Ö±ð¼ÆËã³ö¡°Ê³Æ·¡±¡¢¡°ÒÂ×Å¡±¡¢¡°¾Óס¡±¡¢¡°¹«ÓÃÊÂÒµ¡±¡¢¡°½»Í¨Í¨ÐÅ¡±¡¢¡°ÎÄ»¯½ÌÓý¡±ºÍ¡°Ò½ÁƱ£½¡¡±Õ¼¼ÒÍ¥Éú»îÏû·Ñ×ÜÖ§³öµÄ°Ù·Ö±È£¬²¢²¹³äÍê³ÉÏÂÁÐÉÈÐÎͳ¼Æͼ£®£¨°Ù·ÖºÅÇ°±£ÁôһλСÊý£¬Ô²ÐĽǾ«È·µ½1¡ã£©
£¨2£©¼ÆËãÉϺ£ÊоÓÃñµÄ¶÷¸ñ¶ûϵÊý£¬²¢ÅжÏ2013ÄêÉϺ£ÊоÓÃñµÄÉú»îˮƽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{1}{x-y}$¡Â£¨$\frac{1}{y}$-$\frac{1}{x}$£©£¬ÆäÖÐx=$\sqrt{3}$+$\sqrt{2}$£¬y=$\sqrt{3}$-$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô¡÷ABC¡×¡÷DEF£¬ÇÒ¡ÏA=70¡ã£¬¡ÏB=60¡ãÔò¡ÏD=70¡ã£¬¡ÏF=50¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸