£¨1£©¡ßµãDÊÇOAµÄÖе㣬
¡àOD=2£¬
¡àOD=OC£®
ÓÖ¡ßOPÊÇ¡ÏCODµÄ½Çƽ·ÖÏߣ¬
¡à¡ÏPOC=¡ÏPOD=45¡ã£¬
¡à¡÷POC¡Õ¡÷POD£¬
¡àPC=PD£®
£¨2£©¹ýµãB×÷¡ÏAOCµÄƽ·ÖÏߵĴ¹Ïߣ¬´¹×ãΪP£¬µãP¼´ÎªËùÇó£®
Ò×ÖªµãFµÄ×ø±êΪ£¨2£¬2£©£¬¹ÊBF=2£¬×÷PM¡ÍBF£¬
¡ß¡÷PBFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àPM=
BF=1£¬
¡àµãPµÄ×ø±êΪ£¨3£¬3£©£®
¡ßÅ×ÎïÏß¾¹ýԵ㣬
¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=ax
2+bx£®
ÓÖ¡ßÅ×ÎïÏß¾¹ýµãP£¨3£¬3£©ºÍµãD£¨2£¬0£©£¬
¡àÓÐ
½âµÃ
¡àÅ×ÎïÏߵĽâÎöʽΪy=x
2-2x£»
£¨3£©ÓɵÈÑüÖ±½ÇÈý½ÇÐεĶԳÆÐÔÖªDµã¹ØÓÚ¡ÏAOCµÄƽ·ÖÏߵĶԳƵ㼴ΪCµã£®
Á¬½ÓEC£¬ËüÓë¡ÏAOCµÄƽ·ÖÏߵĽ»µã¼´ÎªËùÇóµÄPµã£¨ÒòΪPE+PD=EC£¬¶øÁ½µãÖ®¼äÏ߶Î×î¶Ì£©£¬´Ëʱ¡÷PEDµÄÖܳ¤×îС£®
¡ßÅ×ÎïÏßy=x
2-2xµÄ¶¥µãEµÄ×ø±ê£¨1£¬-1£©£¬CµãµÄ×ø±ê£¨0£¬2£©£¬
ÉèCEËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬
ÔòÓÐ
£¬
½âµÃ
£®
¡àCEËùÔÚÖ±ÏߵĽâÎöʽΪy=-3x+2£®
µãPÂú×ã
£¬
½âµÃ
£¬
¹ÊµãPµÄ×ø±êΪ
(£¬)£®
¡÷PEDµÄÖܳ¤¼´ÊÇCE+DE=
+
£»
£¨4£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄPµã£®¾ØÐεĶԳÆÖÐÐÄΪ¶Ô½ÇÏߵĽ»µã£¬¹ÊN£¨2£¬1£©£®
¢Ùµ±PµãÔÚNµãÉÏ·½Ê±£¬ÓÉ£¨2£©ÖªF£¨2£¬2£©£¬ÇÒ¡ÏNFC=90¡ã£¬ÏÔÈ»Fµã·ûºÏPµãµÄÒªÇ󣬹ÊP£¨2£¬2£©£»
¢Úµ±PµãÔÚNµãÏ·½Ê±£¬ÉèP£¨a£¬a£©£¬Ôò£º¡ßC£¨0£¬2£©£¬N£¨2£¬1£©£¬¡àÓɹ´¹É¶¨ÀíµÃ£¬CP
2+PN
2=CN
2£¬¼´a
2+£¨a-2£©
2+£¨2-a£©
2+£¨1-a£©
2=5£¬¼´4a
2-10a+4=0£¬½âµÃa=
»òa=2£¬¹ÊP£¨
£¬
£©£¬
×ÛÉÏ¿ÉÖª£º´æÔÚµãP£¬Ê¹¡ÏCPN=90¶È£®Æä×ø±êÊÇ
(£¬)»ò£¨2£¬2£©£®