精英家教网 > 初中数学 > 题目详情
如图所示,等边△ABC的边长为2,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于M,交AC于N,连接MN,形成一个△AMN,则△AMN的周长为______.
令CP=BM,交AC延长线于P,连接DP.
∵△BDC是等腰三角形,且∠BDC=120°
∴BD=CD,∠DBC=∠DCB=30°
又∵△ABC等边三角形
∴∠ABC=∠ACB=60°
∴∠MBD=∠ABC+∠DBC=90°
同理可得∠NCD=90°
∴∠PCD=∠NCD=∠MBD=90°
又∵CP=BM,
∴△BDM≌△CDP
∴MD=PD
∠MDB=∠PDC
∵∠MDN=60°
∴∠MDB+∠NDC=∠PDC+∠NDC=∠BDC-∠MDN=60°即∠MDN=∠PDN=60°
∴△NMD≌△NPD(SAS)
∴MN=PN=NC+CP=NC+BM
∴△AMN的周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2+2=4
故△AMN的周长为4.
故填4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点F是△ABC的AC边中点,过点A作BC的平行线,与∠ABC的平分线相交于点D,E为BD的中点.
试探究:(1)AE与BD的位置关系,并给予证明;
(2)EF、AB、BC之间的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

Rt△AOB中,∠AOB=90°,∠ABO=30°,BO=4,分别以OA,OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内做等边△ODE.
(1)如图(1),当E点恰好落在线段AB上,求E点坐标;
(2)在(1)问的条件下,将△ODE在线段OB上向右平移如图,图中是否存在一条与线段OO′始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;
(3)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正六边形被三组平行线划分成小的正三角形,则图中全体正三角形的个数是(  )
A.24B.36C.38D.76

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将边长分别为2、4、6的三个正三角形按如图方式排列,A、B、C、D在同一直线上,则图中阴影部分的面积的和为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在△ABC内部时(如图②),点P在△ABC外部时如图③,这两种情况下是否还存在PE+PF+PG=BC的结论?若成立请给予证明,若不成立,那么PE、PF、PG与BC又有怎样的关系,请写出你的猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABC和△ECD均为等边三角形,B、C、D三点共线,AD与BE交于点O.求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)求证:PD=DQ;
(2)若△ABC的边长为1,求DE的长.

查看答案和解析>>

同步练习册答案