精英家教网 > 初中数学 > 题目详情

【题目】某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),yx之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.

(1)甲车间每天加工零件为_____件,图中d值为_____

(2)求出乙车间在引入新设备后加工零件的数量yx之间的函数关系式.

(3)甲车间加工多长时间时,两车间加工零件总数为1000件?

【答案】80 770

【解析】

(1)由图象的信息解答即可;

(2)利用待定系数法确定解析式即可;

(3)根据题意列出方程解答即可.

(1)由图象甲车间每小时加工零件个数为720÷9=80个,

d=770,

故答案为:80,770

(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,

B(4,120),C(9,770)

yBC=kx+b,过B、C,

,解得

y=130x﹣400(4x9)

(3)由题意得:80x+130x﹣400=1000,

解得:x=

答:甲车间加工天时,两车间加工零件总数为1000

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读以下材料:

对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.

对数的定义:一般地,若ax=N(a0,a1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.

我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:

logaM=m,logaN=n,则M=am,N=an

MN=aman=am+n,由对数的定义得m+n=loga(MN)

又∵m+n=logaM+logaN

loga(MN)=logaM+logaN

解决以下问题:

(1)将指数43=64转化为对数式_____

(2)证明loga=logaM﹣logaN(a0,a1,M0,N0)

(3)拓展运用:计算log32+log36﹣log34=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形BCO是三角形BAO经过某种变换得到的.

(1)写出A,C的坐标;

(2)图中A与C的坐标之间的关系是什么?

(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,

(1)求证:直线CD是⊙O的切线.
(2)求证:△FEC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中点,以C为圆心,4cm长为半径作圆,则A,B,C,D四点中,在圆内的有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们学习了勾股定理后,都知道勾三、股四、弦五”.

观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.

(1)请你根据上述的规律写出下一组勾股数:________

(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________________,请用所学知识说明它们是一组勾股数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC是正三角形,曲线CDEF叫做“正三角形的渐开线”,其中 圆心依次按A、B、C…循环,它们依次相连接.若AB=1,则曲线CDEF长是(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①ABACBDCD分别平分∠ABC和∠ACB.问:(答题时,注意书写整洁)

(1)图①中有几个等腰三角形?(写出来,不需要证明)

(2)D点作EFBC,交ABE,交ACF,如图②,图中增加了几个等腰三角形,选一个进行证明.

(3)如图③,若将题中的ABC改为不等边三角形,其他条件不变,图中有几个等腰三角形?线段EFBECF有什么关系?(写出来,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )

①AD是∠BAC的平分线 ②∠ADC=60°

③点D在AB的垂直平分线上 ④AB=2AC.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案