精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,△BCE、△ACD分别是以BE、AD为斜边的直角三角形,且BE=AD,△CDE是等边三角形.求证:△ABC是等边三角形.
分析:根据等边三角形CDE的性质、等量代换求得∠3=∠1=60°;然后由全等三角形Rt△BCE和Rt△ACD推知对应边BC=AC;据此可以判定△ABC是等边三角形.
解答:精英家教网证明:∵△CDE是等边三角形,
∴EC=CD,∠1=60°.(1分)
∵BE、AD都是斜边,
∴∠BCE=∠ACD=90°(1分)
在Rt△BCE和Rt△ACD中,
EC=DC
BE=AD
(1分)
∴Rt△BCE≌Rt△ACD(HL).(1分)
∴BC=AC.(1分)
∵∠1+∠2=90°,∠3+∠2=90°,
∴∠3=∠1=60°.(1分)
∴△ABC是等边三角形.
点评:本题考查了等边三角形的判定与性质、全等三角形的判定与性质.等边三角形的判定可以通过三个内角相等,三条边都相等或者两条相等的边之间的夹角是60°等方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.AD与BE平行吗?为什么?
解:AD∥BE,理由如下:
∵AB∥CD(已知)
∴∠4=
∠BAE
两直线平行,同位角相等

∵∠3=∠4(已知)
∴∠3=
∠4
等量代换

∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
等量代换

∠BAF
=
∠DAC

∴∠3=
∠DAC
等量代换

∴AD∥BE(
内错角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

25、推理填空:
已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.
求证:AD∥BE.
证明:∵AB∥CD(已知)
∴∠4=∠
BAF
两直线平行,同位角相等

∵∠3=∠4(已知)
∴∠3=∠
4
已知

∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质)
即∠BAF=∠
CAD

∴∠3=∠
CAD
等量代换

∴AD∥BE(
内错角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

请把下列证明过程补充完整.
已知:如图,BCE,AFE是直线,AD∥BC,∠1=∠2,∠3=∠4,
求证:AB∥CD
证明:∵AD∥BC(已知)
∴∠3=∠
CAD
CAD
两直线平行,内错角相等
两直线平行,内错角相等
  )
∵∠3=∠4(已知)
∴∠4=∠
CAD
CAD
(等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
等式性质
等式性质

      即∠BAF=∠
CAD
CAD

∴∠4=∠
BAF
BAF
(等量代换)
∴AB∥CD(
同位角相等,两直线平行
同位角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源:2013-2014学年黑龙江大庆市初三第二学期第一次月考数学试卷(解析版) 题型:解答题

已知:如图,△BCE、△ACD分别是以BEAD为斜边的直角三角形,且BE=AD,△CDE是等边三角形.求证:△ABC是等边三角形.

 

 

查看答案和解析>>

同步练习册答案