解:(1)过点D作DH⊥MC于点H,
∵菱形ABCD的周长为8,
∴CD=2,
∵CD=CM,且∠D=67.5°,
∴∠2=∠D=67.5°,∠DCH=45°,CM=2,
在Rt△CDH中,DH=DC×sin45°=
,
∴S
△MCD=
CM•DH=
×2×
=
;
(2)延长AB到N,使BN=EM,连接CN,
∵CD=CM,CD=CB,且∠ABC=∠D,
∴BC=CM,∠1=∠2=∠ABC,
∴∠1=∠5,
在△BNC和△MEC中,
,
∴△BNC≌△MEC(SAS),
∴∠4=∠3,NE=NC,
∵AD∥BC,
∴∠2=∠BCM=∠ABC,
∵∠ECF=
∠ABC,
∴∠3+∠BCF=∠4+∠BCF=∠ECF,
在△NCF和△ECF中,
,
∴△NCF≌△ECF(SAS),
∴FN=EF,
EF=FB+NB=FB+EM,
∴FB=EF-EM.
分析:(1)首先过点D作DH⊥MC于点H,由菱形ABCD的周长为8,且∠D=67.5°,易求得∠2=∠D=67.5°,∠DCH=45°,CM=2,然后由勾股定理求得DH的长,继而求得△MCD的面积;
(2)首先延长AB到N,使BN=EM,连接CN,易证得△BNC≌△MEC(SAS),继而证得△NCF≌△ECF(SAS),则可证得BF=EF-EM.
点评:此题考查了菱形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.