分析 根据直角三角形斜边上的中线等于斜边的一半可得AG=DG,然后根据等边对等角的性质可得∠ADG=∠DAG,再结合两直线平行,内错角相等可得∠ADG=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGE=2∠ADG,从而得到∠AED=∠AGE,再利用等角对等边的性质得到AE=AG,然后利用勾股定理列式计算即可得解.
解答 解:∵四边形ABCD是矩形,点G是DF的中点,
∴AG=DG,
∴∠ADG=∠DAG,
∵AD∥BC,
∴∠ADG=∠CED,
∴∠AGE=∠ADG+∠DAG=2∠CED,
∵∠AED=2∠ADE
∴∠AED=∠AGE,
∴AE=AG=3,
在Rt△ABE中,AB=$\sqrt{{AE}^{2}{-BE}^{2}}$=2$\sqrt{2}$.
点评 本题考查了矩形的性质,等边对等角的性质,等角对等边的性质,以及勾股定理的应用,求出AE=AG是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ${x^2}+3x-4=x({x+3-\frac{4}{x}})$ | B. | (x+2)(x-2)=x2-4 | ||
C. | x2-4+3x=(x+2)(x-2)+3x | D. | $-{x^2}+x-\frac{1}{4}=-{({x-\frac{1}{2}})^2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | -3 | C. | $\frac{11}{3}$ | D. | -2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com