精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为

[  ]

A.

B.

C.

D.

答案:C
解析:

  分析:先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.

  解答:解:在Rt△ABC中,

  ∵∠C=90°,AB=5,BC=3,

  ∴AC=4,

  ∴cosA=

  点评:本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.


提示:

锐角三角函数的定义;勾股定理.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案