精英家教网 > 初中数学 > 题目详情

通过计算,探索规律.

1=1

根据上面的结果归纳、猜想、1+2+3+……+100=________

1+2+3+……+n=________

答案:略
解析:

5050


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、附加题:你能很快计算出19952吗?
为了解决这个问题,我们来考察个位为5的自然数的平方,任意一个个位为5的自然数都可以写成10n+5的形式,于是原题即求(10n+5)2的值.N为自然数,分析n=1,n=2,n=3,…这些简单情况,从中探索其规律,并归纳、猜想出结论.
(1)通过计算、探索规律:152=100×1(1+1)+25;252=100×2(2+1)+25;352=100×3(3+1)+25;452=
100×4(4+1)+25
;652=
100×6(6+1)+25
;952=
100×9(9+1)+25

(2)从(1)小题的结果,归纳、猜想得:(10n+5)2=
100×n×(n+1)+25

(3)根据上面的归纳、猜想,请计算出19952=
3980025

查看答案和解析>>

科目:初中数学 来源: 题型:

5、(1)通过计算,探索规律:
152=225可写成100×1×(1+1)+25
252=625可写成100×2×(2+1)+25
352=1225可写成100×3×(3+1)+25

则752=5625可写成
100×7×(7+1)+25
;852=7225可写成
100×8×(8+1)+25

(2)从(1)的结果,归纳猜想得(10n+5)2=
100×n×(n+1)+25

(3)根据上面的归纳猜想,请计算:19952=
3980025

查看答案和解析>>

科目:初中数学 来源: 题型:

你能很快算出20052吗?
为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n+5(n为正整数),即求(10n+5)2的值,试分析n=1,2,3…这些简单情形,从中探索其规律.
(1)通过计算,探索规律:152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+25;…752=5625可写成
100×7×(7+1)+25
100×7×(7+1)+25
,852=7225可写成
100×8×(8+1)+25
100×8×(8+1)+25

(2)根据以上规律,试计算:1052=
11025
11025
,20052
=4020025
=4020025

查看答案和解析>>

科目:初中数学 来源: 题型:

你会求(a-1)(a2012+a2011+a2010+‥‥a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:
(a-1)(a+1)=a2-1
(a-1)(a2+a+1)=a3-1;
(a-1)(a3+a2+a+1)=a4-1;
(1)由上面的规律我们可以大胆猜想,得到(a-1)(a2012+a2011+a2010+‥‥a2+a+1)=
a2013-1
a2013-1

利用上面的结论,求
(2)22013+22012+22011+‥‥22+2+1的值是
22014-1
22014-1
.        
(3)求52013+52012+52011+‥‥52+5+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究问题:你能很快地算出19952吗?
探究准备:为了解决这个问题,我们考查个位上的数为5的自然数的平方.任意一个个位数为5的自然数都可以写成10n+5,为求(10n+5)2的值(n为自然数),我们试着分析n=1,n=2,n=3…这些简单的情况,探索其规律,并归纳、猜想出结论.
探究过程:
(1)通过计算,探索规律:152=225可写成
 
,252=625可写成
 
,352=1225可写成
 
,452=2025可写成
 
,…752=5625可写成
 
,852=7225可写成
 

(2)从第(1)题的结果归纳、猜想到:
 

(3)根据上面归纳、猜想,可以算出:19952=
 

查看答案和解析>>

同步练习册答案