精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
m
x
(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与x轴交于点C,与函数y=
m
x
的图象交于点B,若AB=BC,求原点O到直线AB的距离.
分析:(1)利用待定系数法求反比例函数解析式即可;
(2)首先作AF⊥x轴于F,作BE⊥x轴于E,作BG⊥y轴于G,交AF于H,直线AC交y轴于D,证明Rt△BCE≌Rt△ABH(AAS),即可得出B点坐标,求出直线AB的解析式,
由S△COD=
1
2
×CO×DO=
1
2
×CD×d,求出即可.
解答:解:(1)∵反比例函数y=
m
x
(m为常数)的图象经过点A(-1,6),
∴m=-1×6=-6,
∴m的值为-6.
∴反比例函数的解析式为:y=-
6
x


(2)如图,作AF⊥x轴于F,作BE⊥x轴于E,
作BG⊥y轴于G,交AF于H,直线AC交y轴于D.
∵BG∥CO,∴∠ABH=∠BCF,
同理,∴∠BAH=∠CBE,
在Rt△BCE和Rt△ABH中
∠CEB=∠BHA
∠ECB=∠HAB
BC=AB

∴Rt△BCE≌Rt△ABH(AAS).
∴CE=BH,BE=AH.
又四边形BEFH为矩形,BH=EF,∴CE=EF.
由题意:AF=6,∴BE=
1
2
AH=3

∴点B的纵坐标为3.又点B在反比例函数y=-
6
x
的图象上,
∴点B的横坐标为x=-2,即点B的坐标为(-2,3).
设直线AC的方程为y=kx+b,将A(-1,6)、B(-2,3)的坐标代入直线方程,
-k+b=6
-2k+b=3

解方程组,得
k=3
b=9

∴直线AB的方程为y=3x+9.
令y=0,得x=-3,令x=0,得y=9.
∴点C、D的坐标为(-3,0)、(0,9),∴CO=3,OD=9.
由勾股定理得CD=
32+92
=3
10

设原点O到直线AB的距离为d,则由S△COD=
1
2
×CO×DO=
1
2
×CD×d,
得3×9=3
10
×d,
d=
9
10
=
9
10
10
点评:此题主要考查了反比例函数的综合应用以及全等三角形的判定与性质以及三角形面积等知识,得出直线AB的解析式利用三角形面积求出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案