精英家教网 > 初中数学 > 题目详情
27、如图1,两个不全等的四边形ABCD、四边形CGFE是正方形,连接BG,DE.交DC于H,交CG于K
(1)观察图形,①猜想BG与DE之间长度关系;②猜想BG与DE所在直线的位置关系,并证明你的猜想.
直接回答:连接四边形DBEG四边中点所得四边形是
正方

(2)如图2,将原题中正方形改为菱形,且∠BCD=∠GCE=90°.则(1)中的①、②的结论是否成立?若成立,请证明;若不成立,请说明理由.
直接回答:连接四边形DBEG四边中点所得四边形是
正方


(3)如图3,将原题中正方形改为矩形,且BC=mCG、CD=mCE则(1)中的①、②结论是否成立?不要证明
直接回答:连接四边形DBEG四边中点所得四边形是
形.
分析:(1)根据正方形的性质得到BC=DC,CE=CG,∠BCD=∠GCE=90°,推出∠BCG=∠ECD,根据SAS证△BCG≌△DCE,得到BG=DE,∠GBC=∠CDE,根据三角形的内角和定理求出∠DOH即可;
(2)根据正方形的判定证出是正方形,由(1)说明即可;
(3)根据三角形的中位线定理证出是平行四边形,根据对角线垂直证出一个角是直角,即可得出答案.
解答:(1)解:①BG与DE之间长度关系是BG=DE,②BG与DE所在直线的位置关系是BG⊥DE,
证明:∵正方形ABCD、EFGC,
∴BC=DC,CE=CG,∠BCD=∠GCE=90°,
∴∠BCG=∠ECD,
∴△BCG≌△DCE,
∴BG=DE,∠GBC=∠CDE,
∵∠GBC+∠BHC=90°,
∴∠CDE+∠DEG=90°,
∴∠DOH=180°-90°=90°,
∴BG⊥DE.
故答案为:正方.

(2)成立,
证明:∵菱形ABCD、EFGC,
∵∠BCD=∠GCE=90°,
∴菱形ABCD、EFGC是正方形,
由(1)证出BG=DE,BG⊥DE,
∴仍成立.
故答案为:正方.

(3)答:①不成立,②成立,
故答案:矩.
点评:本题主要考查对三角形的中位线定理,正方形的性质和判定,矩形的性质和判定,平行四边形的判定,全等三角形的性质和判定,三角形的内角和定理,垂直的定义,菱形的性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC、BD的数量关系是
相等
;直线AC、BD相交成角的度数是
90°

(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC,BD的数量关系是
相等
,直线AC,BD相交成
90
度角.
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.

(1)在图1中,你发现线段AC,BD的数量关系是
相等
相等
,直线AC,BD相交成
90
90
度角.
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
解:(2)在图2中,(1)中的两个结论
成立
成立
(是否成立);
理由如下:延长CA交BD于点
E,∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
E,∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.

(2)在图3中,(1)中的两个结论
成立
成立
(是否成立);
理由如下:延长CA交BD于点
F
F
,交OD于点
E
E

查看答案和解析>>

科目:初中数学 来源:2012届江苏省初三第一学期期中考试数学试卷 题型:解答题

如图甲,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.

1.在图甲中,你发现线段AC、BD的数量关系是_______,直线AC、BD相交成____度角

2.将图甲中的绕点O顺时针旋转,在图乙中作出旋转后的

3.将图甲中的绕点O顺时针旋转一个锐角,得到图丙,这时(1)中的两个结论是否成立?作出判断,并说明理由.若绕点O继续旋转更大的角度时,结论仍然成立吗?作出判断,不必说明理由.

 

查看答案和解析>>

同步练习册答案