分析 由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;
解答 解:∵AB=AC,
BE=a,AE=b,
∴AC=AB=a+b,
∵DE是线段AC的垂直平分线,
∴AE=CE=b,
∴∠ECA=∠BAC=36°,
∵∠BAC=36°,
∴∠ABC=∠ACB=72°,
∴∠BCE=∠ACB-∠ECA=36°,
∴∠BEC=180°-∠ABC-∠ECB=72°,
∴CE=BC=b,
∴△ABC的周长为:AB+AC+BC=2a+3b
故答案为:2a+3b.
点评 本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{h}{sinα}$ | B. | $\frac{h}{cosα}$ | C. | $\frac{h}{tanα}$ | D. | h•cosα |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com