精英家教网 > 初中数学 > 题目详情
如图,△ABO中,O是坐标原点,A,B
(1)①以原点O为位似中心,将△ABO放大,使变换后得到的△CDO与△ABO的位似比为2:1,且D在第一象限内,则C点坐标为(______
【答案】分析:(1)①首先根据点D的位置确定△COD的位置,然后根据位似比作图,即可得到点C、D的坐标;
②可过E作y轴的垂线,设垂足为F,由于△ODE是由△ODC翻折而得,故OE=OC=2,∠EOD=∠COD=30°,根据这些条件,即可在Rt△OEF中,通过解直角三角形求出点E的坐标.
(2)在(1)题中,已经求得了E、C的坐标,利用待定系数法求解即可.
(3)四边形MEOC中,△OEC的面积是定值,若四边形的面积最大,则△EMC的面积最大;过M作MN∥y轴,交直线CE于N,设出点M的横坐标,根据抛物线和直线CE的解析式即可得到MN的长,以MN为底,C、E横坐标差的绝对值为高,即可得到△EMC的面积表达式,进而可得到关于四边形MEOC的面积和M点横坐标的函数关系式,根据函数的性质即可得到四边形的面积最大值,及对应的M点坐标.
解答:解:(1)①由题意知:OC=2OA=2
CD=2AB=2;
故C(2,0),D(2,2);
②如图,过E作EF⊥y轴于F;
Rt△OCD中,OC=2,CD=2,则有:
∠DOC=30°;
根据折叠的性质知:
OE=OC=2,∠EOD=∠DOC=30°;
在Rt△OEF中,OE=2,∠FOE=30°,
则:FE=,OF=3,
故E(,3).

(2)由于抛物线经过E(,3),C(2,0),依题意有:

解得
∴抛物线的解析式为:y=-x2+2x;

(3)过M作MN∥y轴,交CE于N;
∵E(,3),C(2,0),
∴直线EC:y=-x+6;
设M(x,-x2+2x),则N(x,-x+6),
∴MN=-x2+2x-(-x+6)=-x2+3x-6;
∴四边形EMCO的面积S=S△EMC+S△EOC
=×(-x2+3x-6)×+×2×3
=-x2+x=-(x-2+
∴当x=,即M()时,四边形OEMC的面积最大,且最大值为
点评:此题是二次函数的综合题,涉及到图形的位似变化、二次函数解析式的确定、函数图象交点坐标及图形面积的求法、二次函数最值的应用等重要知识点,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且AB=4
3
,求
ECF
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图Rt△ABO中,∠ABO=Rt∠,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到△OA1B1的位置.
(1)求点A、B1的坐标;
(2)求经过A、O、B1三点的抛物线解析式;
(3)抛物线对称轴l上是否存在点P,使PO+PB1的值最小?若存在,求出点P的坐标;若不存在,说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABO中,OA=OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O切线;
(2)若∠B=30°,且AB=4
3
,求
ECF
的长(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABO中,O是坐标原点,A(-
3
,0)
,B(-
3
,1)

(1)①以原点O为位似中心,将△ABO放大,使变换后得到的△CDO与△ABO的位似比为2:1,且D在第一象限内,则C点坐标为(
 
 
);D点坐标为(
 
 
);
②将△DOC沿OD折叠,点C落在第一象限的E处,画出图形,并求出点E的坐标;
(2)若抛物线y=ax2+bx(a≠0)过(1)中的E、C两点,求抛物线的解析式;
(3)在(2)中的抛物线EC段(不包括C、E点)上是否存在一点M,使得四边形MEOC面积最大?若存在,求出这个最大值,并求出此时M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)如图,△ABO中,AB⊥OB,OB=
3
,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为(  )

查看答案和解析>>

同步练习册答案