精英家教网 > 初中数学 > 题目详情

如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BCAC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据).

  ⑴若修建的斜坡BE的坡角(即∠BAC)不大于45°,则平台DE的长最多为 米;

⑵一座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即

HDM)为30°.点BCAGH在同一个平面上,点CAG在同一条直线上,且HGCG,问建筑物GH高为多少米?

解:⑴11.0(10.9也对).

            ⑵过点DDPAC,垂足为P.

              在Rt△DPA中,.

              在矩形DPGM中,.

              在Rt△DMH中,.

              ∴.

              答:建筑物GH高为45.6米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:
3
≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为
11.0
11.0
米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(下面两小题的结果都精确到0.1米,参考数据:
3
≈1.732)
(1)若修建的斜坡BE的坡度为1:0.8,则平台DE的长为
14.0
14.0
米;
(2)斜坡前的池塘内有一座建筑物GH,小明在平台E处测得建筑物顶部H的仰角(即∠HEM)为30°,测得建筑物顶部H在池塘中倒影H′的俯角为45°(即∠H′EM),测得点B、C、A、G、H、H′在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高和AG的长.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏苏州卷)数学(带解析) 题型:解答题

如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据).
【小题1】若修建的斜坡BE的坡角(即∠BAC)不大于45°,则平台DE的长最多为 ▲ 米;
【小题2】一座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江宁波城区五校联考初三第一学期12月月考数学试卷(解析版) 题型:解答题

如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.

(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为多少米?

(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠DHM)为30°,点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

 

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏苏州卷)数学(解析版) 题型:解答题

如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据).

1.若修建的斜坡BE的坡角(即∠BAC)不大于45°,则平台DE的长最多为  ▲  米;

2.一座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

 

查看答案和解析>>

同步练习册答案