【题目】为选派一名学生参加全市实践活动技能竞赛,A,B两位同学在校实习基地现场进行加工直径为20mm的零件的测试,他俩加工的10个零件的相关数据依次如下图表所示(单位:mm).
根据测试得到的有关数据,试解答下列问题:
平均数 | 方差 | 完全符合要求的个数 | |
A | 20 | 0.026 | 2 |
B | 20 | S2B | 5 |
(1)考虑平均数与完全符合要求的个数,你认为________的成绩好些.
(2)计算出S2B的大小,考虑平均数与方差,说明谁的成绩好些.
(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.
【答案】(1)B;(2)B的成绩好些;(3)理由合理即可,见解析.
【解析】试题分析:(1)由于A、B两位同学成绩的平均数相同,而完全符合要求的个数B同学较多,所以B同学的成绩好些;
(2)利用方差计算公式可以求出SB2的大小,然后利用方差和平均数的意义即可求解;
(3)利用(1)(2)的结论结合实际情况说明问题即可解决问题.
试题解析:
(1)由于A、B两位同学成绩的平均数相同,而完全符合要求的个数B同学较多,所以B同学的成绩好些;
(2)∵SB2= [4(20.020.0)2+3(19.920.0)2+(20.120.0)2+(19.9520.0)2+(20.220.0)2]
=0.008,
又∵SA2=0.026,
所以SA2>SB2,
在平均数相同的情况下,B的波动小,所以B的成绩好些;
(3)从图中的折线走势可知,A的成绩前面起伏较大,误差较大,而B的成绩比较稳定,并且预测B的潜力大,可选派B去参赛.
[说明:(3)的答案不唯一,只要能以统计知识作为理由依据即可,但只回答选A或选B而没有以统计知识作为理由依据的不得分]
科目:初中数学 来源: 题型:
【题目】“赵爽炫图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽炫图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若(a+b)2=21,大正方形的面积为13,则小正方形的边长为( )
A. B. 2 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将直线y=2x向上平移1个单位,得到的直线的解析式为( )
A. y=2x+1 B. y=2x﹣1 C. y=2(x+1) D. y=2(x﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
为了在甲、乙两名学生中选拔一人参加数学竞赛,在相同条件下,对他们进行了10次测验,成绩如下:(单位:分)
甲成绩 | 76 | 84 | 90 | 86 | 81 | 87 | 86 | 82 | 85 | 83 |
乙成绩 | 82 | 84 | 85 | 89 | 79 | 80 | 91 | 89 | 74 | 79 |
回答下列问题:
(1)甲学生成绩的众数是_______(分),乙学生成绩的中位数是_______(分).
(2)若甲学生成绩的平均数是甲,乙学生成绩的平均数是乙,则甲与乙的大小关系是:________.
(3)经计算知:S2甲=13.2,S2乙=26.36,这表明____________(用简明的文字语言表述)
(4)若测验分数在85分(含85分)以上为优秀,则甲的优秀率为________;乙的优秀率为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:
(1)这次调查的家长总数为 .家长表示“不赞同”的人数为 ;
(2)求图②中表示家长“无所谓”的扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某广告公司拟招聘广告策划人员1名,对A,B,C三名候选人进行三项素质测试,他们的各项测试成绩如下表所示:
测试项目 | 测试成绩/分 | ||
A | B | C | |
专业知识 | 54 | 72 | 81 |
创新能力 | 69 | 81 | 57 |
公关能力 | 90 | 60 | 81 |
(1)如果按三项测试的平均成绩确定聘用人员,那么谁被聘用?
(2)根据实际需要,公司将专业知识、创新能力和公关能力三项测试的得分按3:5:2的比确定个人的测试成绩,此时谁将被聘用?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com