精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求图象经过点A的反比例函数的解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.
分析:(1)根据两个角对应相等,即可证明两个三角形相似;
(2)要求反比例函数的解析式,则需求得点A的坐标,即要求得AG的长,根据旋转的两个图形全等的性质以及相似三角形的对应边的比相等可以求解;
(3)要求直线AB的解析式,主要应求得点B的坐标.根据点B的横坐标是4和(2)中求得的反比例函数的解析式即可求得.再根据待定系数法进行求解.
解答:解:(1)△OGA∽△OMN,
理由:
∵∠OGA=∠M=90°,
∠GOA=∠MON
∴△OGA∽△OMN;

(2)由(1)得
AG
NM
=
OG
OM

AG
2
=
2
4

∴AG=1,
设反比例函数为y=
k
x
(k不等于0),
把A(1,2)代入得k=2,
∴过点A的反比例函数的解析式为y=
2
x


(3)∵点B的横坐标为4,
把x=4代入y=
2
x
中得y=
1
2

故B(4,
1
2
),
设直线AB的解析式是y=mx+n,
把A(1,2),B(4,
1
2
)代入
m+n=2
4m+n=
1
2

解得
m=-
1
2
n=
5
2

∴直线AB的解析式为y=-
1
2
x+
5
2
点评:此题要求学生:
①能够根据旋转的性质得到对应边相等;
②掌握相似三角形的判定和性质;
③能够运用待定系数法求得函数的解析式,根据函数的解析式确定点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案