精英家教网 > 初中数学 > 题目详情
精英家教网已知,如图在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.
(1)若∠B=40°,∠C=30°,则∠DAE=
 

(2)若∠B=80°,∠C=40°,则∠DAE=
 

(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为
 
.理由如下:
分析:首先根据三角形的内角和定理求出∠BAC的度数,又由于AE平分∠BAC,根据角平分线的定义可得出∠BAE的度数;由AD是BC边上的高,可知∠ADB=90°,由直角三角形两锐角互余,可求出∠BAD的度数;最后根据∠DAE=∠BAE-∠BAD,即可得出结果.
解答:解:由图知,∠DAE=∠BAE-∠BAD=
1
2
∠BAC-∠BAD
=
1
2
(180°-∠B-∠C)-(90°-∠B)
=90°-
1
2
∠B-
1
2
∠C-90°+∠B
=
1
2
(∠B-∠C)
所以(1)当∠B=40°,∠C=30°时,∠DAE=5°;

(2)当∠B=80°,∠C=40°时,∠DAE=20°;

(3)由以上得出结论:∠DAE=
1
2
(∠B-∠C).
点评:本题主要考查三角形的内角和定理,角平分线的定义及三角形的高的定义.解答的关键是找到已知角和所求角之间的联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图在△ABC中,DE∥BC,
AD
DB
=
1
3
,则
DE
BC
=(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:初中数学 来源: 题型:

9、已知:如图在△ABC中,AD平分∠BAC,AD⊥BC,则△ACD≌△ABD的根据是
ASA

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图在△ABC中,∠C=90°,BD是∠ABC的内角平分线,BC=2
3
,BD=4,求AB和AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,∠ACB=90°,AC=8,BC=6,CD、CE分别是斜边AB上的中线和高.则下列结论错误的是(  )

查看答案和解析>>

同步练习册答案