精英家教网 > 初中数学 > 题目详情
2.若y=$\sqrt{x-\frac{1}{2}}$+$\sqrt{\frac{1}{2}-x}$-6,则xy=-3.

分析 根据分式有意义的条件即可求出x与y的值.

解答 解:由题意可知:$\left\{\begin{array}{l}{x-\frac{1}{2}≥0}\\{\frac{1}{2}-x≥0}\end{array}\right.$,
解得:x=$\frac{1}{2}$,
∴y=0+0-6=-6,
∴xy=-3,
故答案为:-3

点评 本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.(1)解方程:$\frac{2}{x}$-$\frac{1}{x+1}$=0;
(2)解不等式组:$\left\{\begin{array}{l}{x+3>0}\\{1-2x≤-3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,正三角形△OAB的边OA在x轴上,D是OB边上的动点(不与端点O,B重合),双曲线y=$\frac{k}{x}$过点D,且与BA交于点C,设AB=8,$\frac{BD}{BO}$=n.
(1)当n=$\frac{1}{4}$时,求反比例函数的表达式;
(2)若DC⊥BD,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在正方形网格上有一个△ABC.
(1)画出△ABC关于直线MN的对称图形(不写画法);
(2)若网格上的每个小正方形的边长为1,则△ABC的面积为$\frac{17}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.

(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中:
①探究三条线段AB,CE,CF之间的数量关系,并说明理由;
②若CE=4,CF=2,求DN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{-1,-1}=-1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:
(1)max{5,2}=5,max{0,3}=3;
(2)若max{3x+1,-x+1}=-x+1,求x的取值范围;
(3)求函数y=x2-2x-4与y=-x+2的图象的交点坐标,函数y=x2-2x-4的图象如图所示,请你在图中作出函数y=-x+2的图象,并根据图象直接写出max{-x+2,x2-2x-4}的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在平面直角坐标系中,点P(m-3,4-2m)不可能在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:-(-2)+$\sqrt{8}$-2sin45°+(-1)3

查看答案和解析>>

同步练习册答案