精英家教网 > 初中数学 > 题目详情
3.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.
(1)求证:△AFE≌△CDE;
(2)若AB=4,BC=8,求图中阴影部分的面积.

分析 (1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠F=∠B,AB=AF,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AE=CE,EF=DE,根据勾股定理得到DE=3,根据三角形的面积公式即可得到结论.

解答 解:(1)∵四边形ABCD是矩形,
∴AB=CD,∠B=∠D=90°,
∵将矩形ABCD沿对角线AC翻折,点B落在点F处,
∴∠F=∠B,AB=AF,
∴AF=CD,∠F=∠D,
在△AEF与△CDE中,$\left\{\begin{array}{l}{∠F=∠D}\\{∠AEF=∠CED}\\{AF=CD}\end{array}\right.$,
∴△AFE≌△CDE;
(2)∵AB=4,BC=8,
∴CF=AD=8,AF=CD=AB=4,
∵△AFE≌△CDE,
∴AE=CE,EF=DE,
∴DE2+CD2=CE2
即DE2+42=(8-DE)2
∴DE=3,
∴EF=3,
∴图中阴影部分的面积=S△ACF-S△AEF=$\frac{1}{2}$×4×8-$\frac{1}{2}$×4×3=10.

点评 本题考查了翻折变换-折叠的性质,全等三角形的判定和性质,矩形的性质,勾股定理,三角形面积的计算,熟练掌握折叠的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则DE=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克)3035404550
日销售量p(千克)6004503001500
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润-日支出费用)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.
(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?
(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的$\frac{1}{5}$少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(-2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.
(1)求证:△CDE是等边三角形;
(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列命题中假命题是(  )
A.正六边形的外角和等于360°B.位似图形必定相似
C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:1-$\frac{{x}^{2}-1}{{x}^{2}+2x+1}$÷$\frac{x-1}{x}$,其中x=$\sqrt{5}$-1.

查看答案和解析>>

同步练习册答案