精英家教网 > 初中数学 > 题目详情
(2011•辽阳)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)
分析:应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.
解答:解:作AE⊥PQ于E,CF⊥MN于F.(1分)
∵PQ∥MN,
∴四边形AECF为矩形.
∴EC=AF,AE=CF.(2分)
设这条河宽为x米,
∴AE=CF=x.
在Rt△AED中,
∵∠ADP=60°,
∴ED=
AE
tan60°
=
x
3
=
3
3
x.(4分)
∵PQ∥MN,
∴∠CBF=∠BCP=30°.
∴在Rt△BCF中,
BF=
CF
tan30°
=
x
3
3
=
3
x.(6分)
∵EC=ED+CD,AF=AB+BF,
3
3
x+110=50+
3
x.
解得x=30
3

∴这条河的宽为30
3
米.(10分)
点评:本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•辽阳)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.
(1)试说明直线AC是⊙O的切线;
(2)当AE=4,AD=2时,求⊙O的半径及BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,已知等边△ABC的面积为1,D、E分别为AB、AC的中点,若向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,AB为⊙O直径,CD⊥AB,∠BDC=35°,则∠CAD=
70°
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
).

查看答案和解析>>

同步练习册答案