精英家教网 > 初中数学 > 题目详情
1.先化简,再求值:(1-$\frac{2}{x+1}$)÷$\frac{1}{{x}^{2}-1}$,其中x=2$\sqrt{2}$+1.

分析 首先化简(1-$\frac{2}{x+1}$)÷$\frac{1}{{x}^{2}-1}$,然后把x=2$\sqrt{2}$+1代入化简后的算式,求出算式的值是多少即可.

解答 解:(1-$\frac{2}{x+1}$)÷$\frac{1}{{x}^{2}-1}$
=$\frac{x-1}{x+1}$÷$\frac{1}{{x}^{2}-1}$
=(x-1)2
当x=2$\sqrt{2}$+1时,
原式=${(2\sqrt{2}+1-1)}^{2}$=8.

点评 此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.解不等式组$\left\{\begin{array}{l}{5x+2≥4x①}\\{x<2-2x②}\end{array}\right.$
请结合题意填空,完成本题的解答
(Ⅰ)解不等式①,得x≥-2
(Ⅱ)解不等式②,得x<$\frac{2}{3}$
(Ⅲ)把不等式①和②的解集在数轴上表示出来
(Ⅳ)原不等式的解集为-2≤x<$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在等腰直角三角形△ABC,AC=BC,∠ACB=90°,CF⊥AB交AB于点F,点D在AC上,连接BD,交CF于点G,过点C作BD的垂线交BD于点H,交AB于点E.
(1)如图一,∠ABD=∠CBD,CG=1,求AB;
(2)如图二,连接AH,FH,若∠AHF=90°,求证:HB=$\sqrt{2}$AH.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知三个正数a,b,c满足$\frac{2a-b}{c}$=$\frac{2b-c}{a}$=$\frac{2c-a}{b}$=k,则k=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.化简求值$(\frac{{x}^{2}+2x-1}{x+1}-1)•\frac{1}{x+2}$,其中x=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平行四边形ABCD中,添加一个条件使它成为一个矩形,你添的条件是AC=BD(不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,3)、(4,0)、($\frac{7}{4}$,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD.
(1)用尺规作图的方法,过点D作DM⊥BE,垂足为M(不写作法,只保留作图痕迹);
(2)若AB=2,求EM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.甲、乙、丙三人准备玩传球游戏.规则是:第1次传球从甲开始,甲先将球随机传给乙、丙两人中的一个人,再由接到球的人随机传给其他两人中的一个人…如此反复.
(1)若传球1次,球在乙手中的概率为$\frac{1}{2}$;
(2)若传球3次,求球在甲手中的概率(用树状图或列表法求解).

查看答案和解析>>

同步练习册答案