精英家教网 > 初中数学 > 题目详情

已知抛物线

(1)求证:不论m取何值,此抛物线与x轴必有两个交点,并且有一个交点是A(2,0);

(2)设此抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式;

(3)设d=10,P(a,b)为抛物线上一点,①当△ABP是直角三角形时,求b的值;②当△ABP是锐角三角形、钝角三角形时,分别写出b的取值范围(不必写出解答过程)

答案:
解析:

(1),得,所以抛物线x轴必有两个交点,一个为A(20),另一个为

(2)

(3)d=10时,m=±3,抛物线,对称轴为x=7,顶点为(7,-25),设AB的中点为E(70),连PEPE=AB=5,过PPMABM①又点p在抛物线上,所以②解①、②组成的方程组,得b=1b=0,当b=0时,点Px轴上,△ABP不存在,所以b=1,由图可知:当△ABP为锐角三角形时,-25b<-1;当△ABP为钝角三角形时,则b>-1b0


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2与动直线y=(2t-1)x-c有公共点(x1,y1),(x2,y2),且x12+x22=t2+2t-3.
(1)求实数t的取值范围;
(2)当t为何值时,c取到最小值,并求出c的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•恩施州)如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+b经过点A(4,4)和点B(0,-4).C是x轴上的一个动点.
(1)求抛物线的解析式;
(2)若点C在以AB为直径的圆上,求点C的坐标;
(3)将点A绕C点逆时针旋转90°得到点D,当点D在抛物线上时,求出所有满足条件的点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线

1.求抛物线顶点M的坐标;

2.若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;

3.在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2012年北京通州区中考模拟数学卷 题型:解答题

已知抛物线

1.求抛物线顶点M的坐标;

2.若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;

3.在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案