精英家教网 > 初中数学 > 题目详情

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

【答案】
(1)

证明:如图1中

∵∠A=40°,∠B=60°,

∴∠ACB=80°,

∴△ABC不是等腰三角形,

∵CD平分∠ACB,

∴∠ACD=∠BCD= ∠ACB=40°,

∴∠ACD=∠A=40°,

∴△ACD为等腰三角形,

∵∠DCB=∠A=40°,∠CBD=∠ABC,

∴△BCD∽△BAC,

∴CD是△ABC的完美分割线.


(2)

解:①当AD=CD时,如图2

∠ACD=∠A=45°,

∵△BDC∽△BCA,

∴∠BCD=∠A=48°,

∴∠ACB=∠ACD+∠BCD=96°.

②当AD=AC时,如图3中

∠ACD=∠ADC= =66°,

∵△BDC∽△BCA,

∴∠BCD=∠A=48°,

∴∠ACB=∠ACD+∠BCD=114°.

③当AC=CD时,如图4中

∠ADC=∠A=48°,

∵△BDC∽△BCA,

∴∠BCD=∠A=48°,

∵∠ADC>∠BCD,矛盾,舍弃.

∴∠ACB=96°或114°.


(3)

证明:由已知AC=AD=2,

∵△BCD∽△BAC,

,设BD=x,

∴( 2=x(x+2),

∵x>0,

∴x= ﹣1,

∵△BCD∽△BAC,

=

∴CD= ×2=


【解析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得 ,列出方程即可解决问题.本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在( )

A.点C
B.点D或点E
C.线段DE(异于端点) 上一点
D.线段CD(异于端点) 上一点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,CDAB,垂足为D,如果CD=12,AD=16,BD=9,那么△ABC是直角三角形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):
根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数.
(2)将条形统计图补充完整.
(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC与CDE都是等边三角形,点E、F分别为AC、BC的中点。

(1) 求证:四边形EFCD是菱形;(2)如果AB=10,求D、F两点间的距离。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.

(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;

(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为秒.

NPH的面积为1,求的值;

点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)

关系:①ADBCAB=CD③∠A=C④∠B+C=180°.

已知:在四边形ABCD中,            

求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中三视图对应的正三棱柱是(  )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案