精英家教网 > 初中数学 > 题目详情
如图,二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.
(1)∵二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),
与y轴交于点C(0,3),
∴设二次函数为y=a(x+2)(x-4),把点C(0,3)代入得,a(0+2)(0-4)=3,
解得a=-
3
8

∴这个一次函数的解析式为:y=-
3
8
x2+
3
4
x+3;
∵y=-
3
8
x2+
3
4
x+3=-
3
8
(x-1)2+
27
8

∴抛物线的对称轴是直x=1,
∴点D的坐标为(1,0). 
设直线BC的解析式为;y=kx+b(k≠0),
4k+b=0
b=3
,解得
k=-
3
4
b=3

∴直线BC的解析式为y=-
3
4
x+3.

(2)∵A(-2,0),B(4,0),C(0,3),D(1,0),
∴OD=1,BD=3,CO=3,BO=4,AB=6,
∴BC=
OB2+OC2
=
42+32
=5,
如图1,当∠QDB=∠CAB时,
QB
CB
=
DB
AB
QB
5
=
3
6
,解得QB=
5
2

过点Q作QH⊥x轴于点H,
∵OC⊥x轴,
∴QHCO.
QH
3
=
5
2
5
.解得QH=
3
2

把y=
3
2
代入y=-
3
4
x+3,得x=2.
∴此时,点Q的坐标为(2,
3
2
);
如图2,当∠DQB=∠CAB时,
QB
AB
=
DB
CB
,即
QB
6
=
3
5
,得QB=
18
5

过点Q作QG⊥x轴于点G,
∵OC⊥x轴,
∴QGCO.
QG
3
=
18
5
5
.解得QG=
54
25

把y=
54
25
代入y=-
3
4
x+3,得x=
28
25

∴此时,点Q的坐标为(
28
25
54
25
).
综上所述,点Q坐标为(2,
3
2
)或(
28
25
54
25
);

(3)当点Q的坐标为(2,
3
2
)时,设圆心的M(
5
2
,y).
∵MD=MQ,
∴(
5
2
-1)2+y2=(
5
2
-2)2+(y-
3
2
2,解得y=
1
12

∴M(
5
2
1
12
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;
(2)若与x轴的两个交点为A、B,与y轴交于点C.在该抛物线上找一点D,使得△ABC与△ABD全等,求出D点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形ABCD的边长AB=3,AD=2,将此矩形放在平面直角坐标系中,使AB在x轴的正半轴上,点A在点B的左侧,另两个顶点都在第一象限,且直线y=
3
2
x-1
经过这两个顶点中的一个.
(1)求A、B、C、D四点坐标;
(2)以AB为直径作⊙M,记过A、B两点的抛物线y=ax2+bx+c的顶点为P.
①若P点在⊙M和矩形内,求a的取值范围;
②过点C作CF切⊙M于E,交AD于F,当PFAB时,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的表达式是y=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为4,点P是AB上不与A、B重合的任意一点,作PQ⊥DP,Q在BC上,设AP=x,BQ=y,
(1)求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)求函数图象的顶点坐标,并作出大致图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6999•重庆)如的,二次函数y=96+29+c的的象与9轴只有一个公共点P,与y轴的交点为Q.过点Q的直线y=69+m与9轴交于点A,与这个二次函数的的象交于另一点2,若S△2PQ=3S△APQ,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知:抛物线y=
1
2
x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=
1
2
x-2,连接AC.
(1)B、C两点坐标分别为B(______,______)、C(______,______),抛物线的函数关系式为______;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?

查看答案和解析>>

同步练习册答案