精英家教网 > 初中数学 > 题目详情

【题目】为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设ABxm

(1)若花园的面积为216m2,求x的值;

(2)若在P处有一棵树与墙CDAD的距离分别是17m8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

【答案】(1)x112x218(2)x13时,S取得最大值,最大值为221

【解析】

1)根据ABxm,就可以得出BC30x,由矩形的面积公式就可以得出关于x的方程,解之可得;

2)根据题意建立不等式组求出结论,根据取值范围由二次函数的性质就可以得出结论.

解:(1)根据题意知ABxm,则BC30x(m)

x(30x)216

整理,得:x230x+2160

解得:x112x218

(2)花园面积Sx(30x)

=﹣x2+30x

=﹣(x15)2+225

由题意知

解得:8x13

a=﹣1

∴当x15时,Sx的增大而增大,

∴当x13时,S取得最大值,最大值为221

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,∠C90°AC4BC3,如图1,四边形DEFGABC的内接正方形,则正方形DEFG的边长为_____.如图2,若三角形ABC内有并排的n个全等的正方形,它们组成的矩形内接于ABC,则正方形的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的弦,半径OEABPAB的延长线上一点,PC⊙O相切于点CCEAB交于点F

(1)求证:PCPF

(2)连接OBBC,若OBPCBC3tanP,求FB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请从下列两个小题中任选一个作答,若多选,则按第一题计分.

A:一个正多边形的一个外角为36°,则这个多边形的对角线有_____条.

B:在△ABCABAC,若AB3BC4,则∠A的度数约为_____.(用科学计算器计算,结果精确到0.1°.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作出反比例函数y=-的图象,并结合图象回答:(1)x2时,y的值;(2)1x≤4时,y的取值范围;(3)1≤y4时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=-x+2x轴、y轴分别交于点AC,抛物线y=-x2bxc过点AC,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CDAD,作于点E

(1)求抛物线的表达式;

(2)ACD面积的最大值;

(3)CEDCOB相似,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一种成本为20元的商品,经调研,当该商品每件售价为30元时,每天可销售200件:当每件的售价每增加1元,每天的销量将减少5件.

求销量与售价之间的函数表达式;

如果每天的销量不低于150件,那么,当售价为多少元时,每天获取的利润最大,最大利润是多少?

该商店老板热心公益事业,决定从每天的销售利润中捐出100元给希望工程,为保证捐款后每天剩余利润不低于2900元,请直接写出该商品售价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数ab都是常数,且a<0)的图像与x轴交于点,顶点为点C.

1)求这个二次函数的解析式及点C的坐标;

2)过点B的直线交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;

3)点P为抛物线上一个动点,当∠PBA=CBD时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BEED2EAEC

1)求证:∠EBA=∠C

2)如果BDCD,求证:AB2ADAC

查看答案和解析>>

同步练习册答案