【题目】如图1,△ABC中,点D是BC的中点,BE∥AC,过点D的直线EF交BE于点E,交AC于点F.
(1)求证:BE=CF
(2)如图2,过点D作DG⊥DF交AB于点G,连结GF,请你判断BG+CF与GF的大小关系,并说明理由.
【答案】(1)见解析;(2) BG+CF>GF, 理由见解析.
【解析】
(1)利用“AAS”证明△BDE≌△CDF即可得出结论;
(2)连接EG,利用垂直平分线的性质得出EG=FG,利用(1)中结论BE=CF,然后在△BEG中利用三角形三边关系定理即可得出结论.
(1)证明:∵D是BC的中点,
∴BD=CD,
∵BE∥AC,
∴∠E=∠CFD,
在△BDE和△CDF中,
∴△BDE≌△CDF(AAS),
∴BE=CF;
(2)解:BG+CF>GF,理由如下:
连接EG,
在△BEG中,BG+BE>EG.
∵△BDE≌△CDF,
∴ED=FD,
∵GD⊥EF,
∴EG=FG.
又∵BE=CF,
∴BG+CF>GF.
科目:初中数学 来源: 题型:
【题目】如图所示,已知 AD//BC, 点 E 为 CD 上一点,AE、BE 分别平分∠DAB、∠CBA,BE交 AD 的延长线于点 F.求证:(1)△ABE≌△AEF;(2) AD+BC=AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE其中正确的有( )
A. 1个
B. 2个
C. 3个
D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.
根据以上信息,解答下列问题:
(1) 类学生有_________人,补全条形统计图;
(2)类学生人数占被调查总人数的__________%;
(3)从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示, △ABC是直角三角形,∠A=90°,D是斜边BC的中点,E,F分别是AB,AC边上的动点,且DE⊥DF.
(1)如图(1),连接AD,若AB=AC=17,CF=5,求线段EF的长.
(2)如图(2),若AB≠AC,写出线段EF与线段BE,CF之间的等量关系,并写出证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,D是等边三角形ABC外一点,DB=DC,∠BDC=120°,点E,F分别在AB,AC上.
(1)求证:AD是BC的垂直平分线.
(2)若ED平分∠BEF,求证:FD平分∠EFC.
(3)在(2)的条件下,求∠EDF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB,AC于点D,E.
(1)若∠A=40°,求∠EBC的度数;
(2)若AD=5,△EBC的周长为16,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com