【题目】某家电销售商场电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.
【答案】
(1)解:设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,
根据题意得: = ,
解得:m=1600,
经检验,m=1600是原方程的解,
∴m+400=1600+400=2000
(2)解:设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,
则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,
根据题意得: ,
解得:33 ≤x≤36,
∵x为正整数,
∴x=34,35,36,
∴合理的方案共有3种,
即①电冰箱34台,空调66台;
②电冰箱35台,空调65台;
③电冰箱36台,空调64台;
∵y=﹣50x+15000,k=﹣50<0,
∴y随x的增大而减小,
∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元)
【解析】(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据数量=总价÷单价结合80000元购进电冰箱的数量与用64000元购进空调的数量相等即可得出关于m的分式方程,解之即可得出结论;(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,根据总利润=电冰箱的总利润+空调总利润即可得出y关于x的函数关系式,结合“购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元”即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,取其内的正整数即可得出所有购买方案,再根据一次函数的性质即可解决最值问题.
【考点精析】关于本题考查的分式方程的应用和一元一次不等式组的应用,需要了解列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位);1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.
(1)用含α的代数式表示β,并直接写出α的取值范围;
(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,
(1)填空:BD=______;
(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);
(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=24 cm,BC=26 cm.点P从A出发,以1 cm/s的速度向点D运动,点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ=CD需要__________秒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)尝试探究:
结论1:DM、MN的数量关系是;
结论2:DM、MN的位置关系是;
(2)猜想论证:证明你的结论.
(3)拓展:如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,(1)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.
(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接
写出结论;
(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
图1 图2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com